Page 40 - Volume 12, Issue 2 - Spring 2012
P. 40

knowledge to the diagnosis and rehabilitation of sen- sorineural hearing loss.AT
References
Bidelman, G. M., and Heinz, M. G. (2011). “Auditory-nerve responses predict pitch attributes related to musical consonance- dissonance for normal and impaired hearing,” J. Acoust. Soc. Am. 130, 1488–1502.
Chintanpalli, A., and Heinz, M. G. (2007). “The effect of auditory- nerve response variability on estimates of tuning curves,” J. Acoust. Soc. Am. 122, EL203–EL209.
Ghitza, O. (2001). “On the upper cutoff frequency of the auditory critical-band envelope detectors in the context of speech percep- tion,” J. Acoust. Soc. Am. 110, 1628–1640.
Gilbert, G., and Lorenzi, C. (2006). “The ability of listeners to use recovered envelope cues from speech fine structure,” J. Acoust. Soc. Am. 119, 2438–2444.
Harrison, R. V., and Evans, E. F. (1979). “Some aspects of temporal coding by single cochlear fibres from regions of cochlear hair cell degeneration in the guinea pig,” Arch. Otorhinolaryngol. 224, 71–78.
Heinz, M. G. (2010). “Computational Modeling of Sensorineural Hearing Loss,” in Computational Models of the Auditory System, edited by R. Meddis, E. A. Lopez-Poveda, A. N. Popper, and R. R. Fay (Springer, New York), pp. 177–202.
Heinz, M. G., and Swaminathan, J. (2009). “Quantifying envelope and fine-structure coding in auditory-nerve responses to chi- maeric speech,” J. Assoc. Res. Otolaryngol. 10, 407–423.
Heinz, M. G., Swaminathan, J., Boley, J. D., and Kale, S. (2010). “Across-fiber coding of temporal fine-structure: Effects of noise- induced hearing loss on auditory-nerve responses,” in The Neurophysiological Bases of Auditory Perception, edited by E. A. Lopez-Poveda, A. R. Palmer, and R. Meddis (Springer, New York), pp. 621–630.
Heinz, M. G., and Young, E. D. (2004). “Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss,” J. Neurophysiol. 91, 784–795.
Hopkins, K., and Moore, B. C. (2007). “Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information,” J. Acoust. Soc. Am. 122, 1055–1068.
Hopkins, K., Moore, B. C., and Stone, M. A. (2008). “Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech,” J. Acoust. Soc. Am. 123, 1140–1153.
Joris, P. X. (2003). “Interaural time sensitivity dominated by cochlea-induced envelope patterns,” J. Neurosci. 23, 6345–6350. Kale, S., and Heinz, M. G. (2010). “Envelope coding in auditory nerve fibers following noise-induced hearing loss,” J. Assoc. Res.
Otolaryngol. 11, 657–673.
Kujawa, S. G., and Liberman, M. C. (2009). “Adding insult to injury:
cochlear nerve degeneration after “temporary” noise-induced
hearing loss,” J. Neurosci. 29, 14077–14085.
Liberman, M. C., and Dodds, L. W. (1984). “Single-neuron labeling
and chronic cochlear pathology. III. Stereocilia damage and
alterations of threshold tuning curves,” Hearing Res. 16, 55–74. Liberman, M. C., Gao, J., He, D. Z., Wu, X., Jia, S., and Zuo, J. (2002). “Prestin is required for electromotility of the outer hair
cell and for the cochlear amplifier,” Nature 419, 300–304. Logan, B. F., Jr. (1977). “Information in the zero crossings of band-
pass signals,” Bell Syst. Tech. J. 56, 487–510.
Lorenzi, C., Gilbert, G., Carn, H., Garnier, S., and Moore, B. C.
(2006). “Speech perception problems of the hearing impaired reflect inability to use temporal fine structure,” Proc. Natl. Acad. Sci. USA 103, 18866–18869.
Louage, D. H., Van Der Heijden, M., and Joris, P. X. (2004). “Temporal properties of responses to broadband noise in the auditory nerve,” J. Neurophysiol. 91, 2051–2065.
Miller, R. L., Schilling, J. R., Franck, K. R., and Young, E. D. (1997). “Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers,” J. Acoust. Soc. Am. 101, 3602–3616.
Moore, B. C. J., and Glasberg, B. R. (1987). “Factors affecting thresholds for sinusoidal signals in narrow-band maskers with fluctuating envelopes,” J. Acoust. Soc. Am. 82, 69–79.
Moore, B. C. J., Glasberg, B. R., and Hopkins, K. (2006). “Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure,” Hearing Res. 222, 16–27.
Moore, B. C. J., Peters, R. W., and Stone, M. A. (1999). “Benefits of linear amplification and multichannel compression for speech comprehension in backgrounds with spectral and temporal dips,” J. Acoust. Soc. Am. 105, 400–411.
Nie, K. B., Stickney, G., and Zeng, F. G. (2005). “Encoding frequen- cy modulation to improve cochlear implant performance in noise,” IEEE Trans. Biomed. Eng. 52, 64–73.
Oxenham, A. J., Bernstein, J. G., and Penagos, H. (2004). “Correct tonotopic representation is necessary for complex pitch percep- tion,” Proc. Natl. Acad. Sci. USA 101, 1421–1425.
Peters, R. W., Moore, B. C., and Baer, T. (1998). “Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people,” J. Acoust. Soc. Am. 103, 577–587.
Qin, M. K., and Oxenham, A. J. (2005). “Effects of envelope- vocoder processing on F0 discrimination and concurrent-vowel identification,” Ear. Hearing 26, 451–460.
Rice, S. O. (1973). “Distortion produced by band limitation of an FM wave,” Bell Syst. Tech. J. 52, 605–626.
Robles, L., and Ruggero, M. A. (2001). “Mechanics of the mam- malian cochlea,” Physiological reviews 81, 1305–1352.
Rubinstein, J. T., Wilson, B. S., Finley, C. C., and Abbas, P. J. (1999). “Pseudospontaneous activity: Stochastic independence of audi- tory nerve fibers with electrical stimulation,” Hearing Res. 127, 108–118.
Sachs, M. B., Bruce, I. C., Miller, R. L., and Young, E. D. (2002). "Biological basis of hearing-aid design," Ann. Biomed. Eng. 30, 157–168.
Schooneveldt, G. P., and Moore, B. C. (1987). “Comodulation masking release (CMR): Effects of signal frequency, flanking- band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band,” J. Acoust. Soc. Am. 82, 1944–1956.
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., and Ekelid, M. (1995). “Speech recognition with primarily temporal cues,” Science 270, 303–304.
Smith, Z. M., Delgutte, B., and Oxenham, A. J. (2002). “Chimaeric sounds reveal dichotomies in auditory perception,” Nature 416, 87–90.
Swaminathan, J. (2010). The Role of Envelope and Temporal Fine Structure in the Perception of Noise Degraded Speech (Purdue University, West Lafayette, IN).
Swaminathan, J., and Heinz, M. G. (2011). “Predicted effects of sen- sorineural hearing loss on across-fiber envelope coding in the auditory nerve,” J. Acoust. Soc. Am. 129, 4001–4013.
Swaminathan, J., and Heinz, M. G. (2012). “Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise,” J. Neurosci. 32, 1747–1756.
Voelcker, H. B. (1966). “Towards a unified theory of modulation. I. phase-envelope relationships,” Proc. IEEE 54, 340–354.
Woolf, N. K., Ryan, A. F., and Bone, R. C. (1981). “Neural phase- Physiological Correlates of Perceptual Deficits 39





















































   38   39   40   41   42