Page 41 - 2016Fall
P. 41

                                                                                                                               and Frequency Control 61, 1314-1321. doi:10.1109/tuffc.2014.3038. Hussein, M. I., Leamy, M. L., and Ruzzene, M. (2014). Dynamics of phononic materials and structures: Historical origins, recent progress, and future out-
look. Applied Mechanics Reviews 66, 040802. doi:10.1115/1.4026911. Kadic, M., Bückmann, T., Schittny, R., and Wegener, M. (2013). Metamate- rials beyond electromagnetism. Reports on Progress in Physics 76, 126501.
doi:10.1088/0034-4885/76/12/126501.
Klatt, T., and Haberman, M. R. (2013) A nonlinear negative stiffness meta-
material unit cell and small-on-large multiscale material model. Journal of
Applied Physics 114, 033503. doi:10.1063/1.4813233.
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., and Kim, C. K. (2009).
Acoustic metamaterial with negative density. Physics Letters A 373:4464–
4469. doi:10.1016/j.physleta.2009.10.013.
Liang, B., Yuan, B., and Cheng, J. C. (2009). Acoustic diode: Rectification of
acoustic energy flux in one-dimensional systems. Physical Review Letters
103, 104301. doi:10.1103/PhysRevLett.103.104301.
Liu, Z., Zhang, Z., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., and Sheng,
P. (2000). Locally resonant sonic materials. Science 289, 1734-1736.
doi:10.1126/science.289.5485.1734.
Ma, G., and Sheng, P. (2016). Acoustic metamaterials: From local reso-
nances to broad horizons. Science Advances 2, e1501595. doi:10.1126/
sciadv.1501595.
Naify, C. J., Martin, T. P., Nicholas, M., Calvo, D. C., and Orris, G. J. (2013).
Experimental realization of a variable index transmission line metamate-
rial as an acoustic leaky-wave antenna. Applied Physics Letters 102, 203508.
doi:10.1063/1.4807280.
Norris, A. N. (2015). Acoustic cloaking. Acoustics Today 11(1), 38-46. Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Re-
view Letters 85, 3966-3969. doi:10.1103/physrevlett.85.3966.
Popa, B.-I., and Cummer, S. A. (2014). Non-reciprocal and highly non- linear active acoustic metamaterials. Nature Communications 5, 3398.
doi:10.1038/ncomms4398.
Shim, J., Wang, P., and Bertoldi, K. (2015). Harnessing instability-induced
pattern transformation to design tunable phononic crystals. Interna- tional Journal of Solids and Structures 58, 52–61. doi:10.1016/j.ijsol- str.2014.12.018.
Titovich, A. S., Norris, A.N., and Haberman, M. R. (2016). A high transmis- sion broadband gradient index lens using elastic shell acoustic metamate- rial elements. The Journal of the Acoustical Society of America 139, 3357- 3364. doi:10.1121/1.4948773.
Yamato, M., Koopman, H., Niemeyer, M., and Ketten, D. (2014). Charac- terization of lipids in adipose depots associated with minke and fin whale ears: Comparison with “acoustic fats” of toothed whales. Marine Mammal Science 30, 1549–1563. doi:10.1111/mms.12120.
Zigoneanu, L., Popa, B.-I., and Cummer, S. A. (2014). Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials 13, 352–355. doi:10.1038/nmat3901.
15-06-2016 12:03:54
         GET THE BEST RESULTS EVERY TIME
G.R.A.S. is known for world-class measurement microphones - and not without reason. To ensure our micro- phones can perform under real-life conditions and beyond, G.R.A.S. has developed the HALT testing standard. The Highly Accelerated Life Test consists of:
• Temperature stress test at constant and cyclic temperatures
• Humidity stress test
• Vibration stress test
• Mechanical impulse stress test involving shock and drop
No matter what industry you are in, G.R.A.S. gives you the best results every time. To learn more about the HALT testing standard, go to http://www.gras.dk/halt
          R
R
e
ep
p
l
l
a
a
c
c
e
e
a
a
b
bl
l
e
e
d
di
i
a
ap
p
h
h
r
ra
ag
gm
m
  5
5y
y
e
ea
ar
rs
s
w
w
a
a
r
r
r
r
a
an
nt
ty
                        We make microphones gras.dk
  150616_Acoustics Today _190,5 x 127mm.indd 1
Fall 2016 | Acoustics Today | 39




   39   40   41   42   43