Page 28 - 2018Fall
P. 28

Animal Psychoacoustics
Gates, G. A., and Mills, J. H. (2005). Presbycusis. The Lancet 366, 1111-1120. Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psycho-
physics. Wiley, New York.
Hall, J. D., and Johnson, C. S. (1971). Auditory thresholds of a killer whale Orcinus
orca Linnaeus. The Journal of the Acoustical Society of America 51, 515-517. Heffner, H. E., and Heffner, R. S. (2001). Behavioral assessment of hearing in mice. In Willott, J. F. (Ed.), Handbook of Mouse Auditory Research. CRC
Press, New York, pp. 19-30.
Heffner, H. E., and Heffner, R. S. (2016). The evolution of mammalian
sound localization. Acoustics Today 12(1), 20-27.
Heffner, R. S., and Heffner, H. E. (1982). Hearing in the elephant (Elephas
maximus): Absolute sensitivity, frequency discrimination, and sound local-
ization. Journal of Comparative and Physiological Psychology 96, 926-944. Houser, D. S., and Finneran, J. J. (2006). A comparison of underwater hear- ing sensitivity in bottlenose dolphins (Tursiops truncatus) determined by electrophysiological and behavioral methods. The Journal of the Acoustical
Society of America 120, 1713-1722.
Johansen, S., Larsen, O. N., Christensen-Dalsgaard, J., Seidelin, L., Huulvej,
T., Jensen, K., Lunneryd, S.-G., Boström, M., and Wahlberg, M. (2016). In- air and underwater hearing in the great cormorant (Phalacrocorax carbo sinensis). In Popper, A. N., and Hawkins, A. (Eds.), The Effects of Noise on Aquatic Life II. Springer-Verlag, New York, pp. 505-512.
Johnen, A., Wagner, H., and Gaese, B. H. (2001). Spatial attention modulates sound localization in barn owls. Journal of Neurophysiology 85, 1009-1012.
Johnson, C. S. (1967). Sound detection thresholds in marine mammals. In Tavolga, W. N. (Ed.), Marine Bio-Acoustics II. Pergamon, Oxford, UK, pp. 247-260.
Klink, K. B., Bendig, G., and Klump, G. M. (2006). Operant methods for mouse psychoacoustics. Behavior Research Methods 38, 1-7.
Klink, K. B., and Klump, G. M. (2004). Duration discrimination in the mouse. Journal of Comparative Physiology A 190, 1039-1046.
Kloepper, L. N., Nachtigall, P. E., Gisiner, R., and Breese, M. (2010). De- creased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens). Journal of Experimental Bi- ology 213, 3217-3722.
Klump, G. M., Dooling, R. J., Fay, R. R., and Stebbins, W. C. (1995). Methods in Comparative Psychoacoustics. Birkhauser Verlag, Basel, Switzerland.
Koay, G., Heffner, H. E., and Heffner, R. S. (1997). Audiogram of the big brown bat (Eptesicus fuscus). Hearing Research 105, 202-210.
Kobrina, A., and Dent, M. L. (2016). The effects of aging and sex on detec- tion of ultrasonic vocalizations by adult CBA/CaJ mice (Mus musculus). Hearing Research 341, 119-129.
Konishi, M. (1973). How the owl tracks its prey: Experiments with trained barn owls reveal how their acute sense of hearing enables them to catch prey in the dark. American Scientist 61, 414-424.
Kuhl, P. K. (1981). Discrimination of speech by nonhuman animals: Basic auditory sensitivities conducive to the perception of speech-sound catego- ries. The Journal of the Acoustical Society of America 70, 340-349.
Langemann, U., Hamann, I., and Friebe, A. (1999). A behavioral test of presbycusis in the bird auditory system. Hearing Research 137, 68-76.
Lauer, A. M., Behrens, D., and Klump, G. (2017). Acoustic startle modifica- tion as a tool for evaluating auditory function of the mouse: Progress, pit- falls, and potential. Neuroscience and Biobehavioral Reviews 77, 194-208.
Lewis, R. M., Rubel, E. W, and Stone, J. S. (2016). Regeneration of auditory hair cells: A potential treatment for hearing loss on the horizon. Acoustics Today 12(2), 40-48.
Long, G. R., and Schnitzler, H.-U. (1975). Behavioural audiograms from the bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A 100, 211-219.
May, B. J., and Huang, A. Y. (1996). Sound orientation behavior in cats. 1. Localization of broadband noise. The Journal of the Acoustical Society of America 100, 1059-1069.
Neff, W. D., and Hind, J. E. (1955). Auditory thresholds of the cat. The Jour- nal of the Acoustical Society of America 27, 480-483.
Neilans, E. G., and Dent, M. L. (2015). Temporal coherence for complex signals in budgerigars (Melopsittacus undulatus) and humans (Homo sapi- ens). Journal of Comparative Psychology 129, 174-180.
Pack, A. A., and Herman, L. M. (1995) Sensory integration in the bottle- nosed dolphin: Immediate recognition of complex shapes across the senses of echolocation and vision. The Journal of the Acoustical Society of America 98, 722-733.
Patterson, W. C. (1966). Hearing in the turtle. Journal of Auditory Research 6, 453-464.
Populin, L. C., and Yin, T. C. T. (1998). Behavioral studies of sound localiza- tion in the cat. The Journal of Neuroscience 18, 2147-2160.
Prosen, C. A., Dore, D. J., and May, B. J. (2003). The functional age of hear- ing loss in a mouse model of presbycusis. I. Behavioral assessments. Hear- ing Research 183, 44-56.
Radziwon, K. E., June, K. M., Stolzberg, D. J., Xu-Friedman, M. A., Salvi, R. J., and Dent, M. L. (2009). Behaviorally measured audiograms and gap detection thresholds in CBA/CaJ mice. Journal of Comparative Physiology A 195, 961-969.
Rubel, E. W, Furrer, S. A., and Stone, J. S. (2013). A brief history of hair cell regeneration research and speculations on the future. Hearing Research 297, 42-51.
Schusterman, R. J. (1974). Auditory sensitivity of a California sea lion to airborne sound. The Journal of the Acoustical Society of America 56, 1248-1251.
Schusterman, R. J., Balliet, R. F., and Nixon, J. (1972). Underwater audio- gram of the California sea lion by the conditioned vocalization technique. Journal of the Experimental Analysis of Behavior 17, 339-350.
Searcy, W. A., and Yasukawa, K. (1996). Song and female choice. In Kroods- ma, D. E., and Miller, E. H. (Eds.), Ecology and Evolution of Acoustic Com- munication in Birds. Cornell University Press, Ithaca, NY, pp. 454-473.
Sisneros, J. A., Popper, A. N., Hawkins, A. D., and Fay, R. R. (2016). Audi- tory evoked potential audiograms compared with behavioral audiograms in aquatic animals. In Popper, A. N., and Hawkins, A. (Eds.), The Effects of Noise on Aquatic Life II. Springer-Verlag, New York, pp. 1049-1056.
Sivian, L. J., and White, S. D. (1933). On minimum audible fields. The Jour- nal of the Acoustical Society of America 4, 288-321.
Stebbins, W. C. (1970). Principles of animal psychophysics. In Stebbins, W. C. (Ed.), Animal Psychophysics: The Design and Conduct of Sensory Experi- ments. Springer US, New York, pp. 1-19.
Sturdy, C. B., Phillmore, L. S., Sartor, J. J., and Weisman, R. G. (2001). Re- duced social contact causes auditory perceptual deficits in zebra finches, Taeniopygia guttata. Animal Behaviour 62, 1207-1218.
Welch, T. E., and Dent, M. L. (2011). Lateralization of acoustic signals by dichotically listening budgerigars (Melopsittacus undulatus). The Journal of the Acoustical Society of America 130, 2293-2301.
Wiley, R. H. (2015). Noise Matters. Harvard University Press, Cambridge, MA. Wiley, R. H., and Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of ani-
mal vocalizations. Behavioral Ecology and Sociobiology 3, 69-94.
Zoloth, S. R., Petersen, M. R., Beecher, M. D., Green, S., Marler, P., Moody, D. B., and Stebbins, W. (1979). Species-specific perceptual processing of
vocal sounds by monkeys. Science 204, 870-873.
Zwicker, E., and Fastl, H. (1999). Psychoacoustics. Springer-Verlag, Berlin.
26 | Acoustics Today | Fall 2017

   26   27   28   29   30