Page 45 - 2018Fall
P. 45

                                                                      Diaconescu, A. O., Alain, C., and McIntosh, A. R. (2011). Modality-depen- dent “what” and “where” preparatory processes in auditory and visual sys- tems. Journal of Cognitive Neuroscience 23(7), 1-15.
Ding, N., and Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the United States of America 109(29), 11854-11859.
Eckert, M. A., Teubner-Rhodes, S., and Vaden, K. I. (2016). Is listening in noise worth it? The neurobiology of speech recognition in challenging lis- tening conditions. Ear and Hearing 37, Suppl. 1, 101S-110S.
Erb, J., and Obleser, J. (2013). Upregulation of cognitive control networks in older adults’ speech comprehension. Frontiers in Systems Neuroscience 7, 116.
Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., Gurney, E. M., and Bowtell, R. W. (1999). “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping 7(3), 213- 223.
Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., and Lounasmaa, O. (1993). Magnetoencephalography—Theory, instrumentation, and ap- plications to noninvasive studies of the working human brain. Reviews of Modern Physics 65(2), 413-497.
Harris, K. C., Dubno, J. R., Keren, N. I., Ahlstrom, J. B., and Eckert, M. A. (2009). Speech recognition in younger and older adults: A dependency on low-level auditory cortex. The Journal of Neuroscience 29(19), 6078- 6087.
Hillyard, S. A., Hink, R. F., Schwent, V. L., and Picton, T. W. (1973). Electri- cal signs of selective attention in the human brain. Science 182(108), 177- 180.
Larson, E., and Lee, A. K. C. (2014). Switching auditory attention using spa- tial and non-spatial features recruits different cortical networks. NeuroIm- age 84, 681-687.
Lee, A. K. C., Drews, M. K., Maddox, R. K., and Larson, E. (2013a). Brain imaging, neural engineering research, and next-generation hearing aid de- sign. Audiology Today JanFeb2013, 41-47.
Lee, A. K. C., Rajaram, S., Xia, J., Bharadwaj, H., Larson, E., Hämäläinen, M. S., and Shinn-Cunningham, B. G. (2013b). Auditory selective attention reveals preparatory activity in different cortical regions for selection based on source location and source pitch. Frontiers in Neuroscience 6, Article 190. doi:10.3389/fnins.2012.00190.
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature 453(7197), 869-878.
Mesgarani, N., and Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233– 236.
Middlebrooks, J. C., Simon, J. Z., Popper, A. N., and Fay, R. R. (Eds.). (2017). The Auditory System at the Cocktail Party. Springer International Publish- ing, New York.
O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn- Cunningham, B. G., Slaney, M., Shamma, S. A., and Lalor, E. C. (2014). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex 25(7), 1697-1706.
O’Sullivan, J. A., Shamma, S. A., and Lalor, E. C. (2015). Evidence for neu- ral computations of temporal coherence in an auditory scene and their enhancement during active listening. The Journal of Neuroscience 35(18), 7256-7263.
Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology 8(4), 516-521.
Rauschecker, J. P., and Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience 12(6), 718-724.
Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., and Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cor- tex 14(12), 1346-1357.
Shamma, S. A., Elhilali, M., and Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences 34(3), 114-123.
Sharon, D., Hämäläinen, M. S., Tootell, R. B. H., Halgren, E., and Belliveau, J. W. (2007). The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex. NeuroImage 36(4), 1225-1235.
Shomstein, S., and Yantis, S. (2006). Parietal cortex mediates voluntary con- trol of spatial and nonspatial auditory attention. The Journal of Neurosci- ence 26(2), 435-439.
Simon, J. Z. (2017). Human auditory neuroscience and the cocktail party problem. In Middlebrooks, J. C., Simon, J. Z., Popper, A. N., and Fay, R. R. (Eds.), The Auditory System at the Cocktail Party. Springer International Publishing, New York.
Teki, S., Chait, M., Kumar, S., von Kriegstein, K., and Griffiths, T. D. (2011). Brain bases for auditory stimulus-driven figure-ground segregation. The Journal of Neuroscience 31(1), 164-171.
Wang, D. L. (2017). Deep learning reinvents the hearing aid. IEEE Spectrum 54, 32-37.
Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C.,
Sobel, D., and Bloom, F. E. (1993). Modulation of early sensory processing
in human auditory cortex during auditory selective attention. Proceedings
of the National Academy of Sciences of the United States of America 90(18),
asa school ad 1018 quarter p1_Layout 1 3/17/17 11:14 AM Page 1
8722-8726.
  ASA School 2018
  Living in
the Acoustic
Environment
5-6 May 2018 Chaska, Minnesota
I Two-day program: Lectures, demonstrations, and discussions by distinguished acousticians covering interdisciplinary topics in nine technical areas
I Participants: Graduate students and early career acousticians in all areas of acoustics
I Location: Oak Ridge Hotel and Conference Center I Dates: 5-6 May 2018, immediately preceding the
ASA spring meeting in Minneapolis
I Cost: $50 registration fee, which includes hotel, meals, course materials, transportation from
Oak Ridge to the ASA meeting location
I For information: Application form, preliminary program, and more details will be available in November, 2017 at www.AcousticalSociety.org.
 Fall 2017 | Acoustics Today | 43























































   43   44   45   46   47