Page 53 - 2018Fall
P. 53

Abdula, C., and Dhar, S. (2012). Maturation and aging of the human cochlea: A view through the DPOAE looking glass. Journal of the Association for Re- search in Otolaryngology 13, 403-421. doi:10.1007/s10162-012-0319-2.
Abdala, C., Luo, P., and Shera, C. A. (2015). Optimizing swept-tone proto- cols for recording distortion-product otoacoustic emissions in adults and newborns. The Journal of the Acoustical Society of America 138, 3785-3799. doi:10.1121/1.4937611.
Akinpelu, O. V., Peleva, E., Funnell, W. R., and Daniel, S. J. (2014). Otoacous- tic emissions in newborn hearing screening: A systematic review of the ef- fects of different protocols on test outcomes. International Journal of Pedi- atric Otorhinolaryngology 78, 711-717. doi:10.1016/j.port.2014.01.021.
Brass, D., and Kemp, D. T. (1994). The objective assessment of transient evoked otoacoustic emissions in neonates. Ear and Hearing 15, 371-377.
Brownell, W. E. (2017). What is electromotility? - The history of its discov- ery and its relevance to acoustics. Acoustics Today 13(1), 20-27.
Collet, L., Kemp, D. T., Veuillet, E., Duclaux, R., Moulin, A., and Morgon, A. (1990). Effect of contralateral auditory stimuli on active cochlear microme- chanical properties in human subjects. Hearing Research 43, 251-261.
Dreisbach, L. E., and Siegel, J. H. (2001). Distortion-product otoacoustic emissions measured at high frequencies in humans. The Journal of the Acoustical Society of America 110, 2456-2469.
Gold, T. (1948). Hearing II. The physical basis of the action of the cochlea. Pro- ceedings of the Royal Society London B: Biological Sciences 135, 492-498.
Gorga, M. P., Norton, S. J., Sininger, Y. S., Cone-Wesson, B., Folsom, R. C., Vohr, B. R., Widen, J. E., and Neely, S. T. (2000). Identification of neonatal hearing impairment: Distortion product otoacoustic emissions during the perinatal period. Ear and Hearing 21, 400-424.
Grandori, F., and Lutman, M. E. (1996). Neonatal hearing screening pro- grams in Europe: Towards a consensus development conference. Audiol- ogy 35, 291-295.
Guinan, J. J., Jr. (2006). Olivocochlear efferents: Anatomy, physiology, func- tion, and the measurement of efferent effects in humans. Ear and Hearing 27, 589-607. doi:10.1097/01.aud.0000240507.83072.e7.
He, W., and Ren, T. (2013). Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions. Scientific Reports 31, Ar- ticle 1874. doi:10.1038/srep01874.
Johnson, J. L., White, K. R., Widen, J. E., Gravel, J. S., James, M., Kennalley, T., Maxon, A. B., Spivak, L., Sullivan-Mahoney, M., Vohr, B. R., Weirather, Y., and Holstrum, J. (2005). A multicenter evaluation of how many infants with permanent hearing loss pass a two-stage otoacoustic emissions/auto- mated auditory brainstem response newborn hearing screening protocol. Pediatrics 116, 663-672. doi:10.1542/peds.2004.1688.
Kalluri, R., and Abdala, C. (2015). Stimulus-frequency otoacoustic emis- sions in human newborns. The Journal of the Acoustical Society of America 137, EL78-EL84. doi:10.1121/1.4903915.
Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical Society of America 64, 1386- 1391.
Kemp, D. T., Bray, P., Alexander, L., and Brown, A. M. (1986). Acoustic emission cochleography—Practical aspects. Scandinavian Audiology Sup- plementum 25, 71-95.
Kim, D. O., Dorn, P. A., Neely, S. T., and Gorga, M. P. (2001). Adaptation of distortion product otoacoustic emission in humans. Journal of the Associa- tion for Research in Otolaryngology 2, 231-240.
Kim, S., Frisina, D. R., and Frisina, R. D. (2002). Effects of age on contra- lateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Audiology and Neurotology 7, 348-357.
Konrad-Martin, D., Reavis, K. M., McMillan, G., Helt, W. J., and Dille, M. (2014). Proposed comprehensive ototoxicity monitoring program for VA healthcare (COMP-VA). Journal of Rehabilitation Research and Develop- ment 51, 81-100. doi:10.1682/JRRD.2013.04.0092.
Lonsbury-Martin, B. L., Martin, G. K., Probst, R., and Coats, A. C. (1988). Spontaneous otoacoustic emissions in a nonhuman primate. II. Cochlear anatomy. Hearing Research 33, 69-93.
Luebke, A. E., Stagner, B. B., Martin, G. K., and Lonsbury-Martin, B. L. (2014). Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits. The Journal of the Acoustical Society of America 135, 1941-1949. doi:10.1121/1.4868389.
Martin, G. K., Stagner, B. B., Dong, W., and Lonsbury-Martin, B. L. (2016). Comparing distortion product otoacoustic emissions to intracochlear distortion products inferred from a noninvasive assay. Journal of the As- sociation for Research in Otolaryngology 17, 271-287. doi:10.1007/s10162- 016-0552-1.
Martin, G. K., Stagner, B. B., and Lonsbury-Martin, B. L. (2010). Evi- dence for basal distortion-product otoacoustic emission compo- nents. The Journal of the Acoustical Society of America 127, 2955-2972. doi:10.1121/1.3353121.
Mauk, G. W., White, K. R., Mortensen, L. B., and Behrens, T. R. (1991). The ef- fectiveness of screening programs based on high-risk characteristics in early identification of hearing impairment. Ear and Hearing 12. 312-319.
Meinke, D. K., Stagner, B. B., Martin, G. K., and Lonsbury-Martin, B. L. (2005). Human efferent adaptation of DPOAEs in the L1,L2 space. Hearing Research 208, 89-100.
Moulin, A., Collet, L., Veuillet, E., and Morgon, A. (1993). Interrelations be- tween transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hearing Research 65, 216-233.
Owens, J. J., McCoy, M. J., Lonsbury-Martin, B. L., and Martin, G. K. (1992). Influence of otitis media on evoked otoacoustic emissions in children. Seminars in Hearing 13, 53-66.
Prieve, B. A., and Stevens, F. (2000). The New York State universal newborn hearing screening demonstration project: introduction and overview. Ear and Hearing 21, 85-91.
Seixas, N. S., Goldman, B., Sheppard, L., Neitzel, R., Norton, S., and Kujawa S. G. (2005). Prospective noise-induced changes to hearing among con- struction industry apprentices. Occupational and Environmental Medicine 62, 309-317. doi:10.1136/oem.2004.018143.
Shera, C. A., and Guinan, J. J., Jr. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian otoacoustic emissions. The Journal of the Acoustical Society of America 105, 782-798.
Stover, L., Gorga, M. P., Neely, S. T., and Montoya, D. (1996). Toward optimiz- ing the clinical utility of distortion product otoacoustic emission measure- ments. The Journal of the Acoustical Society of America 100, 956-967.
Vohr, B. R., and Maxon, A. B. (1996). Screening infants for hearing impair- ment. Journal of Pediatrics 128, 710-714.
von Békésy, G. (1960). Experiments in Hearing. McGraw-Hill, New York. Wada, T., Kubo, T., Aiba, T., and Yamane, H. (2004). Further examination of infants referred from newborn hearing screening. Acta Otolaryngologica
Supplement 554, 17-25. doi:10.1080/03655230410018435.
White, K. R. (2003). The current status of EHDI programs in the United States. Mental Retardation and Developmental Disabilities Research Reviews
9, 79-88. doi:10.1002/mrdd.10063.
Whitehead, M. L., Stagner, B. B., Lonsbury-Martin, B. L., and Martin, G.
K. (1994). Measurement of otoacoustic emissions for hearing assessment. IEEE Medicine and Biology Magazine 13, 210-226.
  Fall 2017 | Acoustics Today | 51

   51   52   53   54   55