Page 28 - 2017Winter
P. 28
Overcoming the Brain Barrier
Blasberg, R. G., Patlak, C., and Fenstermacher, J. D. (1975). Intrathecal che- motherapy: Brain tissue profiles after ventriculocisternal perfusion. Jour- nal of Pharmacology and Experimental Therapeutics 195, 73-83.
Burgess, A., Ayala-Grosso, C. A., Ganguly, M., Jordão, J. F., Aubert, I., and Hynynen, K. (2011). Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS ONE 6(11), e27877.
Carpentier, A., Canney, M., Vignot, A., Reina, V., Beccaria, K., Horodyckid, C., Karachi, C., Leclercq, D., Lafon, C., Chapelon, J. Y., Capelle, L., Cornu, P., Sanson, M., Hoang-Xuan, K., Delattre, J. Y., and Idbaih, A. (2016). Clin- ical trial of blood-brain barrier disruption by pulsed ultrasound. Science Translational Medicine 8(343), 343re2.
Chen, H., and Konofagou, E. E. (2014). The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pres- sure. Journal of Cerebral Blood Flow and Metabolism 34, 1197-1204.
Choi, J. J., Pernot, M., Small, S. A., and Konofagou, E. E. (2007). Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine and Biology 33, 95-104.
Choi, J. J., Selert, K., Vlachos, F., Wong, A., and Konofagou, E. E. (2011). Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proceedings of the National Academy of Sciences of the United States of America 108, 16539-16544.
Downs, M. E., Buch, A., Sierra, C., Karakatsani, M. E., Teichert, T., Chen, S., Konofagou, E. E., and Ferrera, V. P. (2015). Long-term safety of repeated blood-brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS ONE 10(5), e0125911.
Fischer, H., Gottschlich, R., and Seelig, A. (1998). Blood-brain barrier per- meation: Molecular parameters governing passive diffusion. Journal of Membrane Biology 165, 201-211.
Ghose, A. K., Viswanadhan, V. N., and Wendoloski, J. J. (1999). A knowledge- based approach in designing combinatorial or medicinal chemistry librar- ies for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combanitorial Chemistry 1, 55-68.
Hynynen, K., McDannold, N., Vykhodtseva, N., and Jolesz, F. A. (2001). Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220, 640-646.
Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews in Neuroscience 5, 347-360.
Jordão, J. F., Thévenot, E., Markham-Coultes, K., Scarcelli, T., Weng, Y. Q., Xhima, K., O’Reilly, M., Huang, Y., McLaurin, J., Hynynen, K., and Au- bert, I. (2013). Amyloid-β plaque reduction, endogenous antibody deliv- ery and glial activation by brain-targeted, transcranial focused ultrasound. Experimental Neurology 248, 16-29.
Karakatsani, M. E., Samiotaki, G., Downs, M., Ferrera, V., and Konofagou, E. E. (2017). Targeting effects on the volume of the focused ultrasound in- duced blood-brain barrier opening in non-human primates in vivo. IEEE Transactions in Ultrasonics, Ferroelectrics, and Frequency Control 64, 798- 810.
Kinoshita, M., McDannold, N., Jolesz, F. A., and Hynynen K. (2006). Non- invasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences of the United States of America 103, 11719-11723.
Konofagou, E. E. (2012). Optimization of the ultrasound-induced blood- brain barrier opening. Theranostics 2, 1223-1237.
Kovacs Z. I., Kim S., Jikaria N., Qureshi F., Milo, B., Lewis, B. K., Bresler, M., Burks, S. R., and Frank, J. A. (2017). Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proceedings of the Nation- al Academy of Sciences of the United States of America 114(1), E75-E84.
Leinenga, G., Langton, C., Nisbet, R., and Götz, J. (2016). Ultrasound treat- ment of neurological diseases—Current and emerging applications. Na- ture Reviews Neurology 12, 161-174.
Lipinski, C. A. (2000). Drug-like properties and the causes of poor solu- bility and poor permeability. Journal of Pharmacological and Toxicological Methods 44, 235-249.
Marquet, F., Teichert, T., Wu, S. Y., Tung, Y. S., Downs, M., Wang, S., Chen, C., Ferrera, V., and Konofagou, E. E. (2014). Real-time, transcranial moni- toring of safe blood-brain barrier opening in non-human primates. PLoS ONE 9(2), e84310.
Olumolade, O. O., Wang, S., Samiotaki, G., and Konofagou, E. E. (2016). Longitudinal motor and behavioral assessment of blood-brain barrier opening with transcranial focused ultrasound. Ultrasound in Medicine and Biology 42(9), 2270-2282.
Pardridge, W. M. (2015). Targeted delivery of protein and gene medicines through the blood-brain barrier. Clinical and Pharmacological Therapies 97, 347-361.
Raymond, S. B., Treat, L. H., Dewey, J. D., McDannold, N. J., Hynynen, K., and Bacskai, B. J. (2008). Ultrasound enhanced delivery of molecular im- aging and therapeutic agents in Alzheimer’s disease mouse models. PLoS ONE 3(5), e2175.
Samiotaki, G. (2015). Quantitative Analysis of the Focused Ultrasound-Induced Blood-Brain Barrier Opening In Vivo for Drug Delivery for Neurodegenerative Diseases. PhD Dissertation, Columbia University, New York.
Samiotaki, G., Acosta, C., Wang, S., and Konofagou, E. E. (2015). Enhanced delivery and bioactivity of the neurturin neurotrophic factor through fo- cused ultrasound-mediated blood-brain barrier opening in vivo. Journal of Cerebral Blood Flow and Metabolism 35, 611-622.
Samiotaki, G., Karakatsani, M. E., Buch, A., Papadopoulos, S., Wu, S. Y., Jam- bawalikar, S., and Konofagou, E. E. (2016). Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates. Magnetic Resonance Imaging 37, 273-281
Sun, T., Samiotaki, G., Wang, S., Acosta, C., Chen, C. C., and Konofagou, E. E. (2015). Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Physics in Medicine & Biology 60, 9079-9094.
Vlachos, F., Tung, Y., and Konofagou, E. E. (2010). Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynam- ic contrast-enhanced MRI. Physics in Medicine & Biology 55, 5451-5466.
Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G., and Konofagou, E. E. (2015). Noninvasive, neuron-specific gene therapy can be facilitated by fo- cused ultrasound and recombinant adeno-associated virus. Gene Therapy 22, 104-110.
Wang, S., Kugelman, T., Buch, A., Herman, M., Han, Y., Karakatsani, M. E., Hussaini, S. A., Duff, K., and Konofagou, E. E. (2017). Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Scientific Reports 7, 39955.
Wu, S. Y., Tung, Y. S., Marquet, F., Downs, M., Sanchez, C., Chen, C., Fer- rera, V., and Konofagou, E. (2014). Transcranial cavitation detection in primates during blood-brain barrier opening—A performance assess- ment study. IEEE Transactions in Ultrasonics, Ferroelectrics, and Frequency Control 61, 966-978.
26 | Acoustics Today | Winter 2017