Page 61 - 2017Winter
P. 61

have increased in the United States. Kidney International 83(3), 479-486.
Ganesan, V., De, S., Greene, D., Torricelli, F. C. M., and Monga, M. (2017).
Accuracy of ultrasonography for renal stone detection and size determina- tion: Is it good enough for management decisions? BJU International 119(3), 464-469. doi:10.1111/bju.13605.
Ghani, K. R., Roghmann, F., Sammon, J.D., Trudeau, V., Sukumar, S., Rahbar, H., Kumar, R., Karakiewicz, P. I., Peabody, J. O., Menon, M., Sun, M., and Trinh, Q.-D. (2014). Emergency department visits in the United States for upper urinary tract stones: Trends in hospitalization and charges. The Jour- nal of Urology 191(1), 90-96. doi:10.1016/j.juro.2013.07.098.
Harper, J. D., Cunitz, B. W., Dunmire, B., Lee, F. C., Sorensen, M. D., Hsi, R. S., Thiel, J., Wessells, H., Lingeman, J. E., and Bailey, M. R. (2016). First in human clinical trial of ultrasonic propulsion of kidney stones. The Journal of Urology 195(4), 956-964. doi:10.1016/j.juro.2015.10.131.
Janssen, K. M., Brand, T. C., Cunitz, B. W., Wang, Y.-N., Simon, J. C., Starr, F., Liggitt, H. D., Thiel, J., Sorensen, M. D., Harper, J. D., Bailey, M. R., and Dunmire, B. (2017). Safety and effectiveness of a longer focal beam and burst duration in ultrasonic propulsion for repositioning urinary stones and fragments. Journal of Endourology 31(8), 793-799. doi:10.1089/ end.2017.0167.
Koizumi, N., Seo, J., Lee, D., Funamoto, T., Nomiya, A., Yoshinaka, K., Sugita, N., Homma, Y., Matsumoto, Y., and Mitsuishi, M. (2011). Robust kidney stone tracking for a non-invasive ultrasound theragnostic system-Servoing performance and safety enhancement. IEEE Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011, pp. 2443-2450. doi:10.1109/ ICRA.2011.5980441/.
Kremkau, F. W. (2010). Sonography: Principles and Instruments, 8th ed. Else- vier/Saunders, St. Louis, MO.
Litwin, M., and Saigal, C. (Eds.). (2012). Urologic Diseases in America. US Department of Health and Human Services, NIH Publication No. 12-7865, US Government Printing Office, Washington, DC. doi:10.1016/B978-0-12- 800077-9.00059-1.
Lu, W., Sapozhnikov, O. A., Bailey, M. R., Kaczkowski, P. J., and Crum, L. A. (2013). Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging. Ultrasound in Medicine and Biology 39(6), 1026-1038. doi:10.1016/j.ultrasmedbio.2013.01.011.
Masch, W. R., Cohan, R. H., Ellis, J. H., Dillman, J. R., Rubin, J. M., and Dav- enport, M. S. (2016). Clinical effectiveness of prospectively reported sono- graphic twinkling artifact for the diagnosis of renal calculus in patients with- out known urolithiasis. American Journal of Roentgenology 206(2), 326-331. doi:10.2214/AJR.15.14998.
Maxwell, A. D., Cunitz, B. W., Kreider, W., Sapozhnikov, O. A., Ryan S. Hsi, R. S., Harper, J. D., Bailey, M. R., and Sorensen, M. D. (2015). Fragmentation of urinary calculi in vitro by burst wave lithotripsy. The Journal of Urology 193(1), 338-344. doi:10.1016/j.juro.2014.08.009.fragmentation.
May, P. C., Haider, Y., Dunmire, B., Cunitz, B. W., Thiel, J., Liu, Z., Bruce, M., Bailey, M. R., Sorensen, M. D., and Harper, J. D. (2016a). Stone-mode ultrasound for determining renal stone size. Journal of Endourology 30(9), 958-962. doi:10.189/end.2016.0341.
May, P. C., Bailey, M. R., and Harper, J. D. (2016b). Ultrasonic propulsion of kidney stones. Current Opinion in Urology 26(3), 264-270. doi:10.1097/ MOU.0000000000000276.
Pace, K. T., Ghiculete, D., Harju, M., Honey, R. J., and University of Toronto Lithotripsy Associates. (2005). Shock wave lithotripsy at 60 or 120 shocks per minute: A randomized, double-blind trial. The Journal of Urology 174(2), 595-599. doi:10.1097/01.ju.0000165156.90011.95.
Paterson, R. F., Lifshitz, D. A., Lingeman, J. E., Evan, A. P., Connors, B. A., Fineberg, N. S., Williams, J. C., Jr., and McAteer, J. A. (2002). Stone frag- mentation during shock wave lithotripsy is improved by slowing the shock
wave rate: Studies with a new animal model. The Journal of Urology 168(5),
2211-2215. doi:10.1016/S0022-5347(05)64357-1.
Pishchalnikov, Y. A., McAteer, J. A., Williams, J. C., Pishchalnikova, I. V, and
Vonderhaar, R. J. (2006). Why stones break better at slow shockwave rates than at fast rates: In vitro study with a research electrohydraulic lithotripter. Journal of Endourology 20(8), 537-541. doi:10.1089/end.2006.20.537.
Rahmouni, A., Bargoin, R., Herment, A., Bargoin, N., and Vasile, N. (1996). Color Doppler twinkling artifact in hyperechoic regions. Radiology 199(1), 269-271. doi:10.1148/radiology.199.1.8633158.
Sapozhnikov, O. A. and Bailey, M. R. (2013). Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. The Journal of the Acoustical Society of America 133(2), 661-676. doi:10.1121/1.4773924.
Sapozhnikov, O. A, Maxwell, A. D., MacConaghy, B., and Bailey, M. R. (2007). A mechanistic analysis of stone fracture in lithotripsy. The Journal of the Acoustical Society of America 0(2), 1190-1202. doi:10.1121/1.2404894.
Scales, C. D., Jr., Smith, A. C., Hanley, J. M., and Saigal, C.S. (2012). Preva- lence of kidney stones in the United States. European Urology 0(1), 160-165. doi:10.1016/j.eururo.2012.03.052.
Sibonga, J. D., and Pietrzyk, R. (2017). Evidence Report: Risk of Renal Stone Formation. Technical Report, Human Research Program, National Aero- nautics and Space Administration, Houston, TX.
Simon, J. C., Dunmire B., Sorensen, M. D., and Bailey, M. R. (2016). De- veloping complete ultrasonic management of kidney stones for space- flight. Journal of Space Safety Engineering 3(2), 50-57. doi:10.1016/S2468- 8967(16)30018-0.
Simon, J. C., Sapozhnikov, O. A., Kreider, W., Breshock, M., Williams, J. C., Jr., and Bailey, M. (2017). The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact. Physics in Medicine and Biology. In press.
Smith-Bindman, R., Aubin, C., Bailitz, J., Bengiamin, R. N., et al. (2014). Ul- trasonography versus computed tomography for suspected nephrolithiasis. The New England Journal of Medicine 371(12), 1100-1110. doi:10.1056/NEJ- Moa1404446.
Sokolov, D. L., Bailey, M. R., and Crum, L. A. (2001). Use of a dual-pulse litho- tripter to generate a localized and intensified cavitation field. The Journal of the Acoustical Society of America 110(3), 1685-1695. doi:10.1121/1.1394221.
Somani, B. K., Aboumarzouk, O., Traxer, O., Baard, J., Kamphuis, G., and de la Rosette, J. (2016). Medical expulsive therapy for ureteral stones: Where do we go from here? Nature Reviews: Urology 13(10), 608-612. doi:10.1038/ nrurol.2016.146.
Sorensen, M. D., Bailey, M. R., Shah, A. R., Hsi, R. S., Paun, M., and Harper, J. D. (2012). Quantitative assessment of shockwave lithotripsy accuracy and the effect of respiratory motion. Journal of Endourology 26(8), 1070-1074. doi:10.1089/end.2012.0042.
Sternberg, K. M., Eisner, B., Larson, T., Hernandez, N., Han, J., and Pais, V. M. (2016). Ultrasonography significantly overestimates stone size when com- pared to low-dose, noncontrast computed tomography. The Journal of Urol- ogy 95, 67-71. doi:10.1016/j.urology.2016.06.002.
Ueno, A., Kawamura, T., Ogawa, A., and Hisao, T. (1977). Relation of spon- taneous ureteral calculi to size. Urology 10(6), 544-546. doi:10.1016/0090- 4295(77)90097-8.
Williams, J. C., McAteer, J. A., Evan, A. P., and Lingeman, J. E. (2010). Micro- computed tomography for analysis of urinary calculi. Urological Research 38(6), 477-484. doi:10.1007/s00240-010-0326-x.
Worcester, E. M., and Coe, F. L. (2008). Nephrolithiasis. Primary Care 35(2), 369-391. doi:10.1016/j.pop.2008.01.005.
Zhu, S., Cocks, F. H., Preminger, G. M., and Zhong, P. (2002). The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound in Medicine and Biology 28(5), 661-671. doi:10.1016/S0301- 5629(02)00506-9.
Winter 2017 | Acoustics Today | 59

   59   60   61   62   63