Page 17 - Spring 2018
P. 17
Acknowledgments
Geoffrey Manley’s research was mainly supported by the Deutsche Forschungsgemeinschaft. Ian Russell’s and Andrei Lukashkin’s research is supported by Grant MR/N004299/1 from the Medical Research Council of the United Kingdom.
References
Authier, S., and Manley, G. A. (1995). A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko. Hearing Research 82, 1-13. https://doi.org/10.1016/0378-5955(94)00138-G.
Brownell, W. E. (1997). How the ear works - Nature’s solutions for listening. The Volta Review 99, 9-28.
Brownell, W. E. (2017). What is electromotility? - The history of its discov- ery and its relevance to acoustics. Acoustics Today 13(1), 20-27.
Bruce, I. C. (2017). Physiologically based predictors of speech intelligibility. Acoustics Today 13(1), 28-35.
Campbell, N. A., Reece, J. B., and Mitchell, L. G. (1999). Biology, 5th ed. Benjamin-Cummings, Menlo Park, CA.
Feng, A. S., Narins, P. M., Xu, C. H., Lin, W. Y., Yu, Z. L., Qiu, Q., Xu, Z. M., and Shen, J. X. (2006). Ultrasonic communication in frogs. Nature 440, 333-336. https://doi.org/10.1038/nature04416.
Futuyma, D. J. (2008). Evolution, 2nd ed. Sinauer Associates, Sunderland, MA.
Hudspeth, A. J. (2008) Making an effort to listen: Mechanical amplification in the ear. Neuron 59, 530-545. https://doi.org/10.1016/j.neuron.2008.07.012.
Jaramillo, F., Markin, V. S., and Hudspeth, A. J. (1993). Auditory il- lusions and the single hair cell. Nature 364, 527-529. https://doi. org/10.1038/364527a0.
Lorimer, T., Gomez, F., and Stoop, R. (2015). Mammalian cochlea as a phys- ics guided evolution-optimized hearing sensor. Science Reports 5, 12492. https://doi.org/10.1038/srep12492.
Lukashkin, A. N., Lukashkina, V. A., Richardson, G. P., and Russell, I. J. (2009). Does the cochlea compromise on sensitivity and frequency selec- tivity? Concepts and Challenges in the Biophysics of Hearing, Proceedings of the 10th International Workshop on the Mechanics of Hearing, Keele, United Kingdom, July 27-31, 2008, pp. 141-147.
Macías, S., Hechavarría, J. C., and Kössl, M. (2016). Sharp temporal tun- ing in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics. Scientific Reports 6, 29129. https://doi. org/10.1038/srep29129.
Manley, G. A. (1990). Peripheral Hearing Mechanisms in Reptiles and Birds. Springer-Verlag, New York.
Manley, G. A. (1995). The lessons of middle-ear function in non-mammals: Improving middle-ear prostheses. Journal of the Royal Society of Medicine 88, 367-368. https://doi.org/10.1177/014107689508800702.
Manley, G. A. (2001). Evidence for an active process and a cochlear ampli- fier in nonmammals. Journal of Neurophysiology 86, 541-549.
Manley, G. A. (2002). Evolution of structure and function of the hear- ing organ of lizards. Journal of Neurobiology 53, 202-211. https://doi. org/10.1002/neu.10115.
Manley, G. A. (2010). An evolutionary perspective on middle ears. Hearing Research 263, 3-8. https://doi.org/10.1016/j.heares.2009.09.004.
Manley, G. A. (2017). Comparative auditory neuroscience: Understanding the evolution and function of ears. Journal of the Association for Research in Otolaryngology 18, 1-24. https://doi.org/10.1007/s10162-016-0579-3.
Manley, G. A., and Köppl, C. (1998). Phylogenetic development of the co- chlea and its innervation. Current Opinion in Neurobiology 8, 468-474. https://doi.org/10.1016/S0959-4388(98)80033-0.
Manley, G. A., and Ladher, R. (2008). Phylogeny and evolution of ciliated mechano-receptor cells. In Hoy, R. R., Shepherd, G. M., Basbaum, A. I., Kaneko, A., and Westheimer, G. (Eds.), The Senses: A Comprehensive Ref- erence. Audition. Elsevier, Amsterdam, pp. 1-34. https://doi.org/10.1016/ B978-012370880-9.00002-5.
Manoussaki, D., Chadwick, R. S., Ketten, D. R., Arruda, J., Dimitria- dis, E. K., and O’Malley, J. T. (2008). The influence of cochlear shape on low-frequency hearing. Proceedings of the National Academy of Sciences of the United States of America 105, 6162-6166. https://doi.org/10.1073/ pnas.0710037105.
Miller, L. A., and Surlykke A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. Bio- Science 51, 570-581. https://doi.org/10.1641/0006-3568(2001)051\[0570:hs idaa\]2.0.co;2.
Narins, P. M., Lewis, E. R., Jarvis, J. J. U. M., and O’Riain, J. (1997). The use of seismic signals by fossorial Southern African mammals: A neu- roethological gold mine. Brain Research Bulletin 44, 641-646. https://doi. org/10.1016/S0361-9230(97)00286-4.
Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 189, 245-256. https://doi.org/10.1007/s00359-003-0406-2.
Pietsch, M., Aguirre Dávila, L., Erfurt, P., Avci, E., Lenarz, T., and Kral, A. (2017). Spiral form of the human cochlea results from spatial constraints. Scientific Reports 7, 7500. https://doi.org/10.1038/s41598-017-07795-4.
Pollack, G. (2017) Insect bioacoustics. Acoustics Today 13(2), 26-34. Russell, I. J., Drexl, M., Foeller, E., Vater, M., and Kössl, M. (2004). The de- velopment of a single frequency place in the mammalian cochlea: The co- chlear resonance in the mustached bat Pteronotus parnellii. The Journal of
Neuroscience 23, 10971-10981.
Russell, I. J., Legan, P. K., Lukashkina, V. A., Lukashkin, A. N., Goodyear,
R. J., and Richardson, G. P. (2007). Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nature Neuroscience 10, 215-223. https://doi.org/10.1038/nn1828.
Schnitzler, H. U., and Denzinger, A. (2011). Auditory fovea and Doppler shift compensation: Adaptations for flutter detection in echolocating bats using CF-FM signals. Journal of Comparative Physiology A, Neuroethol- ogy, Sensory, Neural, and Behavioral Physiology 197, 541-559. https://doi. org/10.1007/s00359-010-0569-6.
Simmons, J. A. (2017). Theories about target ranging in bat sonar. Acoustics Today 13(4), 43-51.
Simões, P. M., Ingham, R. A., Gibson, G., and Russell, I. J. (2016). A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. Journal of Experimental Biology 219, 2039- 2047. https://doi.org/10.1242/jeb.135293.
ter Hofstede, H. M., and Ratcliffe, J. M. (2016). Evolutionary escalation: The bat-moth arms race. Journal of Experimental Biology 219( 11), 1589-1602.
Thomas, J. A., Moss, C. F., and Vater, M. (Eds.). (2003). Echolocation in Bats and Dolphins. University of Chicago Press, Chicago.
Vater, M., and Kössl, M. (2011). Comparative aspects of cochlear func- tional organization in mammals. Hearing Research 273, 89-99. https://doi. org/10.1016/j.heares.2010.05.018.
West, C. D. (1985). The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. The Journal of the Acoustical Society of Ameri- ca 77, 1091-1101. https://doi.org/10.1121/1.392227.
Spring 2018 | Acoustics Today | 15