Page 57 - Winter Issue 2018
P. 57

the Arts 1, 129-131. Sondhauss, C. (1850). Ueber die schallschwingungen der luft in erhitzten

Howarth, T. R., Huang, D., Schumacher, C. R., Mayo, N. K., Cox, glasrohren und in gedeckten pfiefen von ungleicher weite. Annalen der
D. L., Boisvert, I. E., Aliev, A. E., and Baughman, R. H. (2016). In- Physik155, 1-34.
vestigation of carbon nanotubes for acoustic transduction applica- Su.k, I., Kirk, K., Hao, Y., Hall, N. A., and Ruoff, R. S. (2012). Thermoa-
tions. The Iournal of the Acoustical Society of America 140(4), 3086. coustic sound generation from monolayer graphene for transpar-
https://doi.org/10.1121/1.4969616. ent and flexible sound sources. Advanced Materials 24, 6342-6347.

Iiang, K.-L., Yang, Y-C., Chen, Z., Xiao, L., and Fan, S. S. (2008). Ultrasonic https://doi.org/10.1002/adma.201201782.

Thermoacoustic Device. US Patent No. US8452031B2, May 2013. Tian, H., Ren, T.-L., Xie, D., Wang, Y.-F., Zhou, C. I., Feng, T. T., Fu,

Manohar, S., and Razansky, D. (2016). Photoacoustics:Ahistorical review. D., Yang, Y., Peng, P. G., Wang, L. G., and Liu, L. T. (2011a). Gra-
Advances in Optics and Photonics 8, 586-617. https://doi.org/10.1364/ phene-on-paper sound source devices. ACS Nano 5, 4878-4885.
AOP.8.000S86. https://doi.org/10.1021/nn2009535.

Mayo, N. (2015). Improving Efliciency and Performance of Carbon Nanotube Tian, H., Xie, D., Yang, Y., Ren, T.-L., Lin, Y. X., Chen, Y., Wang, Y. F, Zhou,
Based Thermophones. ProQuest Dissertations Publishing, AnnArbor, M]. C. I., Peng, P. G., Wang, L. G., and Liu, L. T. (2011b). Flexible, ultrathin,

Mayo, N. K., Schumacher, C., Cox, D., Boisvert, I. E., Blottman, I. and transparent sound-emitting devices using silver nanowires film. Ap-
B., and Howarth, T. R. (2017). Thermophones for sonar applica- plied Physics Letters 99, 253507. https://doi.org/ 10.1063/ 1.3671332.
tions. The Iournal of the Acoustical Society of America 142(4), 2539. Vesterinen, \/'., Niskanen, A. 0., Hassel, I., and Helisto, P. (2010). Funda-
https://doi.org/10.1121/1.5014275. mental efficiency of nanothermophones: Modelling and experiments.

Mercadier, E. (1881a). Surla radiophonie. Iournal de Physique Théorique etAp- Nano Letters 10, 5020-5024. https://doi.org/10.1021/nl1031869.
pliquee 10(1), 53-68. https://doi.org/10.1051/jphystap:018810010005300. Weisendanger, T. (1878a). The thermophone. The Telegraphic Iournal and

Mercadier, E. (1881b). Sur la radiophonie (2e mémoire). Iour- Electrical Review 6, 400-402.
nal de Physique Theorique et Appliquée 10(1), 147-154. Weisendanger, T. (1878b). The thermophone. Scientific American Supple-
https://doi.org/10.1051/jphystap:0188100100014701. ment 148, 2353.

Mercadier, E. (1881c). Sur la radiophonie (3e mémoire). Iour- Wente, E. C. (1922). The thermophone. Physical Review Iournals Archive
nal de Physique Théorique et Appliquee 10(1), 234-241. 19, 333-345.
https://doi.org/10.1051/jphystap:0188100100023401. Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z. Q., Wang, Y., Qian, L., Zhang,

Niskanen,A.O.,Hassel,I.,Tikander,M.,Maijala,R,Gr6nberg,L.,andHelisto, Y., Li, Q., Iiang, K., and Fan, S. (2008). Flexible, stretchable, transpar-
P. (2009). Suspended metal wire array as a thermoacoustic sound source. ent carbon nanotube thin film loudspeakers. Nano Letters 8, 4539-4545.
Applied Physics Letters 95, 163102. https://doi.org/10.1063/ 1.3249770. https://doi.org/10.1021/nl802750z.

Noda, D., and Ueda, Y. (2013). A thermoacoustic oscillator powered by Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams,
vaporized water and ethanol. American Iournal of Physics 81, 124-126. C. D., Atkinson, K. R., and Baughman, R. H. (2005). Strong, transpar-
https://doi.org/10.1119/1.4766940. ent, multifunctional, carbon nanotube sheets. Science 309, 1215-1219.

Preece, W H. (1880). On some thermal effects of electric currents. Proceed- https://doi.org/10.1126/science.1115311.
ings of the Royal Society ofLondon 30, 408-411.

Preece. W. H. (1881). On the conversion of radiant energy into sonorous
vibrations. Proceedings of the Royal Society ofLondon 31, 506-520. EiD5ket¢h

Rayleigh, I. W. S. (1878). The Theory of Sound, vol. 2, chap. XII. Macmillan  
and Co., London. - - -

Rijke, P. L. (1859). On the vibration of the air in a tube open at both ends. Nathanael. Mayo ls a fésearch Sclentlst
Philosophical Magazine 17,419—422. and eXPerrmer1ta1 PhY5rer5t at the Naval

Rosencwaig, A., and Gersho, A. (1976). Theory of the photo- Undersea Warfare Center (NUWC) in
acoustic effect with solids. Iournal of Applied Physics 47, 64-69. , 9 Newport’ RI_ Dr_ Mayo studied Physics
httpsi//doimg/10'1063/1322296" ~ at the University of Texas at Dallas where

Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics 20, 135-175.  I _

Saito, R., Dresselhaus, M. S., and Dresselhaus, G. (1998). Physical Properties  \ I he Worked at the Nanotech Instltute and
of Carbon Nanotubes. Imperial College Press, London. l I earned his doctorate focused on thgf-

Shi“°d“’ H" Nahjhna’ T“ Ue“°’ K" “d K°5hid“’ N‘ 0999)‘ Thermdly moacoustic sound generation using conductive nanoma-
induced ultrasonic emission from porous silicon. Nature 400, 853-855. _ _ _
httpsi//doimg/10_1038/23664 terials (thermophones). Since graduating, he has worked

Sims, C. C. (1960). Bubble transducer for radiating high-power low-fre- within the Devices, Sensors, and Materials R&D branch at
quency sound in water. The Iournal of the Acoustical Society ofAmerica 32, the NUWC’ developing and testing ea,-bon mu-10tube_based
1305-1308‘MP5://d°i'°rg/10‘1121/1'1907899‘ thermophones for underwater applications His other inter-

Sivian, L I. (1931). Absolute calibration of condenser transducers. Bell Sys- _ . .'
tems Technical Iournal 10, 95-115. https://doi.org/10.1002/j.1538-7305.1931. e5t5 rrrehrde e°rrVer1tr°r1a1 tr arrsdrreer desrgrl» textured ee-
tb01264.x. ramics, signal processing, and surface chemistry.

Winter 2018 | Acnuseics Thclay | EE






















   55   56   57   58   59