Page 57 - Winter2018
P. 57
the Arts 1, 129-131.
Howarth, T. R., Huang, D., Schumacher, C. R., Mayo, N. K., Cox,
D. L., Boisvert, J. E., Aliev, A. E., and Baughman, R. H. (2016). In- vestigation of carbon nanotubes for acoustic transduction applica- tions. The Journal of the Acoustical Society of America 140(4), 3086. https://doi.org/10.1121/1.4969616.
Jiang, K.-L., Yang, Y.-C., Chen, Z., Xiao, L., and Fan, S. S. (2008). Ultrasonic Thermoacoustic Device. US Patent No. US8452031B2, May 2013.
Manohar, S., and Razansky, D. (2016). Photoacoustics: A historical review. Advances in Optics and Photonics 8, 586-617. https://doi.org/10.1364/ AOP.8.000586.
Mayo, N. (2015). Improving Efficiency and Performance of Carbon Nanotube Based Thermophones. ProQuest Dissertations Publishing, Ann Arbor, MI.
Mayo, N. K., Schumacher, C., Cox, D., Boisvert, J. E., Blottman, J. B., and Howarth, T. R. (2017). Thermophones for sonar applica- tions. The Journal of the Acoustical Society of America 142(4), 2539. https://doi.org/10.1121/1.5014275.
Mercadier, E. (1881a). Sur la radiophonie. Journal de Physique Théorique et Ap- pliquée 10(1), 53-68. https://doi.org/10.1051/jphystap:018810010005300.
Mercadier, E. (1881b). Sur la radiophonie (2e mémoire). Jour- nal de Physique Théorique et Appliquée 10(1), 147-154. https://doi.org/10.1051/jphystap:0188100100014701.
Mercadier, E. (1881c). Sur la radiophonie (3e mémoire). Jour- nal de Physique Théorique et Appliquée 10(1), 234-241. https://doi.org/10.1051/jphystap:0188100100023401.
Niskanen, A. O., Hassel, J., Tikander, M., Maijala, P., Grönberg, L., and Helistö, P. (2009). Suspended metal wire array as a thermoacoustic sound source. Applied Physics Letters 95, 163102. https://doi.org/10.1063/1.3249770.
Noda, D., and Ueda, Y. (2013). A thermoacoustic oscillator powered by vaporized water and ethanol. American Journal of Physics 81, 124-126. https://doi.org/10.1119/1.4766940.
Preece, W. H. (1880). On some thermal effects of electric currents. Proceed- ings of the Royal Society of London 30, 408-411.
Preece. W. H. (1881). On the conversion of radiant energy into sonorous vibrations. Proceedings of the Royal Society of London 31, 506-520.
Rayleigh, J. W. S. (1878). The Theory of Sound, vol. 2, chap. XII. Macmillan and Co., London.
Rijke, P. L. (1859). On the vibration of the air in a tube open at both ends. Philosophical Magazine 17, 419-422.
Rosencwaig, A., and Gersho, A. (1976). Theory of the photo- acoustic effect with solids. Journal of Applied Physics 47, 64-69. https://doi.org/10.1063/1.322296.
Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics 20, 135-175. Saito, R., Dresselhaus, M. S., and Dresselhaus, G. (1998). Physical Properties
of Carbon Nanotubes. Imperial College Press, London.
Shinoda, H., Nakajima, T., Ueno, K., and Koshida, N. (1999). Thermally
induced ultrasonic emission from porous silicon. Nature 400, 853-855.
https://doi.org/10.1038/23664.
Sims, C. C. (1960). Bubble transducer for radiating high-power low-fre-
quency sound in water. The Journal of the Acoustical Society of America 32,
1305-1308. https://doi.org/10.1121/1.1907899.
Sivian, L. J. (1931). Absolute calibration of condenser transducers. Bell Sys-
tems Technical Journal 10, 96-115. https://doi.org/10.1002/j.1538-7305.1931. tb01264.x.
Sondhauss, C. (1850). Ueber die schallschwingungen der luft in erhitzten glasröhren und in gedeckten pfiefen von ungleicher weite. Annalen der Physik 155, 1-34.
Suk, J., Kirk, K., Hao, Y., Hall, N. A., and Ruoff, R. S. (2012). Thermoa- coustic sound generation from monolayer graphene for transpar- ent and flexible sound sources. Advanced Materials 24, 6342-6347. https://doi.org/10.1002/adma.201201782.
Tian, H., Ren, T.-L., Xie, D., Wang, Y.-F., Zhou, C. J., Feng, T. T., Fu, D., Yang, Y., Peng, P. G., Wang, L. G., and Liu, L. T. (2011a). Gra- phene-on-paper sound source devices. ACS Nano 5, 4878-4885. https://doi.org/10.1021/nn2009535.
Tian, H., Xie, D., Yang, Y., Ren, T.-L., Lin, Y. X., Chen, Y., Wang, Y. F., Zhou, C. J., Peng, P. G., Wang, L. G., and Liu, L. T. (2011b). Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film. Ap- plied Physics Letters 99, 253507. https://doi.org/10.1063/1.3671332.
Vesterinen, V., Niskanen, A. O., Hassel, J., and Helisto, P. (2010). Funda- mental efficiency of nanothermophones: Modelling and experiments. Nano Letters 10, 5020-5024. https://doi.org/10.1021/nl1031869.
Weisendanger, T. (1878a). The thermophone. The Telegraphic Journal and Electrical Review 6, 400-402.
Weisendanger,T.(1878b).Thethermophone.ScientificAmericanSupple- ment 148, 2353.
Wente, E. C. (1922). The thermophone. Physical Review Journals Archive 19, 333-345.
Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z. Q., Wang, Y., Qian, L., Zhang, Y., Li, Q., Jiang, K., and Fan, S. (2008). Flexible, stretchable, transpar- ent carbon nanotube thin film loudspeakers. Nano Letters 8, 4539-4545. https://doi.org/10.1021/nl802750z.
Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., and Baughman, R. H. (2005). Strong, transpar- ent, multifunctional, carbon nanotube sheets. Science 309, 1215-1219. https://doi.org/10.1126/science.1115311.
BioSketch
Nathanael Mayo is a research scientist and experimental physicist at the Naval Undersea Warfare Center (NUWC) in Newport, RI. Dr. Mayo studied physics at the University of Texas at Dallas where he worked at the Nanotech Institute and earned his doctorate focused on ther-
moacoustic sound generation using conductive nanoma- terials (thermophones). Since graduating, he has worked within the Devices, Sensors, and Materials R&D branch at the NUWC, developing and testing carbon nanotube-based thermophones for underwater applications. His other inter- ests include conventional transducer design, textured ce- ramics, signal processing, and surface chemistry.
Winter 2018 | Acoustics Today | 55