Page 63 - Fall2019
P. 63

Bennett, M. B., and Blackstock, D. T. (1975). Parametric array in air. The Journal of the Acoustical Society of America 57, 562-568. https://doi. org/10.1121/1.380484.
Berktay, H. O. (1965). Possible exploitation of non-linear acoustics in underwater transmitting applications. The Journal of Sound and Vibration 2, 435-461. https://doi.org/10.1016/0022-460X(65)90122-7.
Beyer, R. T. (1997). Nonlinear Acoustics. Acoustical Society of America, Woodbury, NY.
Burns, P. N., Simpson, D. H, and Averkiou, M. A. (2000). Nonlinear imag- ing. Ultrasound in Medicine and Biology 26, Suppl. 1, S19-S22. https:// doi.org/10.1016/S0301-5629(00)00155-1.
Cho, S. T., and Sparrow, V. W. (2011). Diffraction of sonic booms around buildings resulting in the building spiking effect. The Journal of the Acoustical Society of America 129(3), 1250-1260. https://doi. org/10.1121/1.3543984.
Esipov, I., Naugolnykh, K., and Timoshenko, V. (2010). The parametric array and long-range ocean research. Acoustics Today 6(2), 20-26. https:// doi.org/10.1121/1.3467644.
Gor’kov, L. P. (1962). On the forces acting on a small particle in an acous- tic field in an ideal fluid. Soviet Physics – Doklady 6, 773-775.
Gray, M. D., Stride, E. P., and Coussios, C.-C. (2019). Snap, crackle, and pop: Theracoustic cavitation. Acoustics Today 15(1), 19-27. https://doi. org/10.1121/AT.2019.15.1.19.
Hamilton, M. F., and Blackstock, D. T. (Eds.) (2008). Nonlinear Acoustics. Acoustical Society of America, Melville, NY.
Hamilton, M. F., Muir, T. G., and Blackstock, D. T. (2012). Early his- tory of ISNA. In T. Kamakura and N. Sugimoto, N. (Eds.), Nonlinear Acoustics State-of-the-Art and Perspectives. American Institute of Physics,
Melville, NY.
Ilinskii, Y. A., Zabolotskaya, E. A., Treweek, B. C., and Hamilton, M. F.
(2018). Acoustic radiation force on an elastic sphere in a soft elastic medium. The Journal of the Acoustical Society of America 144, 568-576. https://doi.org/10.1121/1.5047442.
Jo, M. C., and Guldiken, R. (2012). Active density-based separation using standing surface acoustic waves. Sensors and Actuators A: Physical 187, 22-28. https://doi.org/10.1016/j.sna.2012.08.020.
Karzova, M. M., Yuldashev, P. V., Khokhlova, V. A., Ollivier, S., Salze, E., and Blanc-Benon, P. (2015). Characterization of spark-generated N-waves in air using an optical schlieren method. The Journal of the Acoustical Soci- ety of America 137(6), 3244-3252. https://doi.org/10.1121/1.4921026.
Karzova, M. M., Yuldashev, P. V., Kreider, W., Rosnitskiy, P. B., Khokhlova, T. D., Sapozhnikov, O. A., Bawiec, C., Partanen, A., and Khokhlova, V. A. (2018). Comparison of Sonalleve V1 and V2 MR-HIFU systems for generating high-amplitude shock-wave fields. Proceedings of the 6th International Symposium on Focused Ultrasound, Reston, VA, October 21-25, 2018.
Kreider, W., Yuldashev, P. V., Sapozhnikov, O. A., Farr, N., Partanen, A., Bailey, M. R., and Khokhlova, V. A. (2013). Characterization of a multi- element clinical HIFU system using acoustic holography and nonlinear modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 60(8), 1683-1698. https://doi.org/10.1109/TUFFC.2013.2750.
Loubeau, A., and Page, J. (2018). Human perception of sonic booms from supersonic aircraft. Acoustics Today 14(3), 23-30. https://doi.org/10.1121/
AT.2018.14.3.23.
Matula, T. J., Sapozhnikov, O. A., Ostrovsky, L. A., Brayman, A. A., Kucewicz, J., MacConaghy, B. E., and De Raad, D. (2018). Ultra- sound-based cell sorting with microbubbles: A feasibility study. The Journal of the Acoustical Society of America 144(1), 41-52. https://doi. org/10.1121/1.5044405.
Maxwell, A. D., Sapozhnikov, O. A., Bailey, M. R., Crum, L. A., Xu, Z., Fowlkes, B., Cain, C., and Khokhlova V. A. (2012). Disintegration of tissue using high intensity focused ultrasound: Two approaches that utilize shock waves. Acoustics Today 8(4), 24-36. https://doi.org/10.1121/1.4788649.
Naugolnykh, K., and Ostrovsky, L. (1998). Nonlinear Wave Processes in Acoustics. Cambridge University Press, Cambridge, UK.
Nyborg, W. L. (1965). Acoustic streaming. In W. P. Mason (Ed.), Physical Acoustics. Academic, New York, Vol. 2B, Chap. 11, pp. 265-331.
Rogers, P. H., and Maglieri, D. J. (2015). Concorde booms and the mysterious east coast noises. Acoustics Today 11(2), 34-42. https://doi. org/10.1121/AT.2015.11.2.34.
Rudenko, O. V., and Soluyan, S. I. (1977). Theoretical Foundations of Non- linear Acoustics. Consultants Bureau, New York.
Sapozhnikov, O. A. (2015). High-intensity ultrasonic waves in fluids: Nonlinear propagation and effects. In Power Ultrasonics. Applications of High-Intensity Ultrasound. Woodhead Publishing, Cambridge, UK, Chap. II, pp. 9-35. https://doi.org/10.1016/B978-1-78242-028-6.00002-8.
Sapozhnikov, O. A., and Bailey, M. R. (2013). Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. The Jour- nal of the Acoustical Society of America 133(2), 661-676. https://doi. org/10.1121/1.4773924.
Sapozhnikov, O. A., Tsysar, S. A., Kreider, W., Li, G., Khokhlova, V. A., and Bailey, M. R. (2014). Characterization of an electromagnetic lithotripter using transient acoustic holography. The Journal of the Acoustical Society of America 136(4), 2191. https://doi.org/10.1121/1.4899941.
Simon, J. C., Maxwell, A. D., and Bailey, M.R. (2017). Some work on the diagnosis and management of kidney stones with ultrasound. Acoustics Today 13(4), 52-59. https://doi.org/10.1121/AT.2017.13.4.52.
Westervelt, P. J. (1960). Parametric end-fire array. The Journal of the Acoustical Society of America 32, 934-935. https://doi.org/10.1121/1.1936546.
Westervelt, P. J. (1963). Parametric acoustic array. The Journal of the Acoustical Society of America 35, 535-537. https://doi.org/10.1121/1.1918525.
Zverev, V. A. (1999). How the idea of a parametric acoustic array was conceived. Acoustical Physics 45(5), 684-692.
BioSketches
Oleg A. Sapozhnikov is a professor in the Department of Acoustics of the Physics Faculty at M. V. Lomonosov Moscow State University (Moscow, Russia) and is also affiliated with the Center for Industrial and Medical Ultrasound at the University of Washington (Seattle). His research interests are in the field of physical acoustics, nonlinear wave phenomena, and medical ultrasound. He is a member of the Board of the International Congress on Ultrasonics (since 2008), head of the “Physical Ultrasound” Division of the Scientific Council on Acoustics of the Russian Academy of Sciences (Moscow), and a Fellow of the
Acoustical Society of America (since 2009).
Vera A. Khokhlova is an associate professor in the Department of Acoustics of the Physics Faculty at M. V. Lomonosov Moscow State University (Moscow, Russia) and is also affiliated with the Center for Industrial and Medical Ultrasound at the University of Washington (Seattle). Her research interests are in the field of nonlinear acoustics, therapeutic ultrasound, shock wave
  Fall 2019 | Acoustics Today | 63






























































   61   62   63   64   65