Page 28 - Spring 2019
P. 28

'rhei-aiaaustaii: Cavitation

contributed to this area of research and to the broader thera- ler for sustaining thermally relevant acoustic cavitation during iiltrasoiind

peutic ultrasound and “theracoustic” cavitation community  :7’; F"'7"”'”/V

{OT its tYaF|5f°"m1iV€ 69105 and 5011350?”-1V6 SPiTi1- Holt, 11. G.,and Roy, 11.A. (:81)-01).l\-/[eiiurernents ofbiibble.erihanced heat.

ing fioni focused, MHZ-frequency irltrasound in a tissue-mimicking ina.

Hafarancaa terial. Ultrasaund in Medicine 1mdBiuIugy 27, 1399.1412.

  1ensen, C., cleveland, 11., and coussios, C. (2013). Real.tiine ternperature

Ainslie. M. A., and Leighton, T. G. (2011). Review of scattering and ex. f""’“"“'°“ ’".'d "‘°""°.""g °”.'HFU “bl""°“ d"°."g}.‘ 3 °°’“.b."‘°d '“°d.”l'
um“ cmsmmiom damping mm and resonance fmqundes of a rng and passive acoustic inapping approach. Physics in Medicine and Biol-

. ’ ’ . . . ugy 59, 5933. https://doi.org/10.1088/0031-9155/58/17/5833.
spherical gas bubble. The 1aiirnal ajthe Acausttcalsaciety ojAmerim 130, . . . .
. Kennedy, 1. E. (2005). 1-Ligh.intensity focused ultrasound in the treatrnent of
3194.3209. https://do1.org/10.1121/1.3628321. mt N‘ R . C 5 311 327 h _/M . 10 1038/

Arvanitis, C. 1)., Bazan-Peregrino, M., 11ifai, 13., seyniour, L. W, and Gous. ;‘:d5;'l'“““"' " ""3 ”"”‘”‘ ""‘”" ’ ' ' “W ""°’3/ '
sios, C. C. (2011). cavitation.enhanced ertravasation for drug delivery. '

Ulfr1Lcuund1'nMedicinet$~Biology37, 1939-1952.https://cloi.org/10.1016/j. KEHSEW’ ‘IT’;  if R°::";’ 1"  S°h;d;; G‘ §"Cx.“’ 
ultrasineclbio.2011.09.004. ° ‘W’ .'  ’ ' " .3” '. "  ' ." 3" . am’ '
. . A. (2015). Histotnpsy methods in mechanical disintegration of tissue: to.

Atcliley, A. A., and Rrosperetti,A. (1999). The crevice rnodel ofbubble nu. d d. . al H u I I t. I I H mh . 31 M5

cleation. The Iournal a] the Amustictzl saciety afAnierica 96, 10s5.1094. W" 5 ““° 7”’ C" °“" " ”""' '""” ’°'‘’''‘” "1 7” ""'“' ’ '
. 162.https://do1.orgI10.3109/02656736.2015.1007538.
““"“”d°"°‘5"°"”“"”3°”' Konofa ou E E (2017) Tres assin the barrier oftlre brain with irltra.

Bhatnagar, s., Kwan, 1. 1., shah, A. 11., coussios, c..c., and carlisle, R. c. d3A * ‘t. ' T d '1“) ‘:1 263
(2015). Exploitation of sub.nricron cavitation nuclei to enhance ultra. 1' I ‘g:}’l:m"S"{V[ as ‘R ‘Came R Sum E and Comics C C
soundunediatedtransdernral transport and penetration ofvaccines. ]our- (2o1*5)'l']’hI d’. ‘A Yd.’ “(H 13;]. " ’ "mi. . * gm‘
nal afcantralled Release 239, 22.30. https://doi.org/10.1002/jps.23971. ' . am’? "“ “Ce ’" Ca?" °""”““g“'S ']m“g"“"°P '

. . . cles. PhysimIRrvlewE92,5. https://do1.orgIl0.1103/PhysRevE.92.0230l9.

9urgess, M., and porter, T. (2015), on.deniand cavitation froni bursting . . .

dm 1 t AC ‘. T d 11(4) 3541 Lughton, T. G. (1994). TheAcaiirtic Buhhle. Acadenuc Press, London, UK.
pes, uusiuuay , . . . .
. . . Ln 1'., Kholchlova. T. D.,Sapozh1-ilkov, 0. A., o Donnell, M., and 1-1wang,I.

carlrsle,11., choi,1., Ea.arn.l1eregrrno,M., Inga, 11., subr, V., Kostlsa, L., Ul- . . . . .

. . H. (2014). A new active cavitation n-rapping technique for pulsed I-IIFU
brich, K., coussios, c..c., and seyniour,1.. w. (2013). Enhanced tuinor H ‘. b W d 1 IEEE T t. W’ . F
uptake and penetration of virotherapy using polymer stealtlring and fo. 3;”; ‘°‘‘: ; ° ‘*5 “fr 1 61 l;’;’;"f7l’g"‘h"" _/M ‘?""“‘;0 13;;
cused irltrasound. zaurnal ajthe Natianal cancer Institute 105,1701.1710. :1; 2‘;1:’l'm65'.fg"”"”’ "" " * ' ' “W ""°”3’ '
h“P“//d°i'°‘5"°'1°93/1”“/Dims‘ Lyoric-P C ICiray M D Mannaris c Eolkes L K stratford M Carnpo,

coussios, c. c., Earny, c. H.,ter Haar, G., and Roy 11. A. (2007). Role of L C’h'“n" D ‘g F‘ Sam 3 Amiergm M ’G;)1d';n R Caxiislg R W“
acoustic cavitation in tire delivery and nonitonng otcancer treatment by F: Mjddllfm M_"R_) G,;eS';m_ E v__ 3;“, 'C*0mim; CfC_ (m,;,_ gm;
lush-mtws-tvfocmd ultmmmd (H1FU>-1"*"M“°M11°W"“WHrP"- and feasibility of iiltrasound.triggered targeted drug delivery of doxo.
therniia 23,105-120.https://doi.org/10.1080/02656730701194131. mbictn 1,0,, (humosensmve ltpmmes in um “,,,,m,,, (1-ARDOX).

C01-ssiosi C- C» and R07. R. A. (2008). Applications of acoustics and Asingle.centre,open.label, phase 1 trial. The Lancet Oncology 19, 1027.
cavitation to non.invasive therapy and drug delivery. Annual Review af 1039.

Fluid Mechanics 40, 395.420. https://doi.org/10.1146/annurev. Marnrottant, P., and 1-lilgenfeldt, s. (2003). controlled vesicle defor.
fluid.40.111406.102l16. ination and lysis by single oscillating bubbles. Nature 423, 153.155.
couture, o., Hingot, V, Holes, 9., Muleki-Seya, 11., and Tanter, M. (2019). httpsi//doi.org/10.1039/nature01s13.
ultrasound localization inicroscopy and super.resolutioni A state oftlie Matirla, T. 1., and chen, 1-1. (2013). Microbubbles as ultrasound contrast
art. IEEE Transactianr an vltrasanicr Eenaelectricr and Frequency cantral agents. Acaustio Tudtzy 9(1), 14.20.
65, 1304.1320. https.//doi.org/10.1109/tirfrc.2019.29s0911. Molinari, M. (2012). Mechanical Eractianatian cf the Intervertelmzl Disc.

Coviello, C., Kozick, R., Choi, I., Gyongy, M., Iensen, C., Smith, P., and phn Thesis, University of oxford, oxford, UK
coussios, c. (2015). Pamive acoustic snapping utilizing optimal beain. Myers, R., coviello, c.,Erbs, P., Eoloppe,1., Rowe, C., Kwan,1., crake. C.,
fornring in ultrasound therapy rnonitoring. The 1aiirnal of the Acaiirtical Einn, s., 1aclrson, E., Ealloirl, 1..M., story, c., coussios, c., and carlisle,
Suciety ojAmeric11 137, 2573 .2595. https://doi.org/10.1121/1.4916694. R. (2016). Rolyineric cups for cavitation.rnediated delivery of oncolytic

Dowling, A. 11., and Efowcs willianis, 1. (1993). saund and saurcer afsaiinal. vaccinia virus. Maleciilar Therapy 24, 1e27.1s33. https://doi.org/10.l038/
Ellis Horwood, chichester, UK. mt.2016.139.

Eox, F. E., and Herzfeld,K.E(19s4). Gasbubbleswithorganicskinascavi. Rapoport, N., Gao, 2. G., and Kennedy, A. (2007). Multifunctional
tation nuclei. The zaiirnalafthe Acaustical saciety afArnerica 25, 994.999. nanoparticles for coinbining ultrasonic tuinor iniaging and targeted
httpsi//doi.org/10.1121/1.1907495. chenrotherapy. 1aurnal cf the Natianal cancer lnrtitiite 99, 1095.110s.

Gray M. 1)., and coussios, C. C. (2019). Broadband ultrasonic attenuation httpsi//doi.org/10.1093/jnci/cljni043.
estiination and conipensation with passive acoustic niapping. IEEE Trans. Rieke, v, and Pauly, K. (2009). M11 thernioinetry. ]ourn11IufM1zgnetic 11era.
actianr an Ultrtmmiu Fermelectriu anal Ereaiiency cantral ss, 1997.2011. nance Imaging 27, 376-390. https://doi.org/10.1002/ji-nri.2l265.
httpsi//doi.org/10.1109/tirfrc.2019.29ss171. stride, E. 11., and coussios, c. C. (2010). cavitation and contrast: The use of

Haworth, K. 1., Bader, K. 9., Rich, K. T., Holland. C. K., and Mast, T. D. bubbles in ultrasound iinaging and therapy. Praceedings afthe lnrtitiitian
(2017). Quantitative frequency.doinain passive cavitation iniaging. IEEE ufMedim11'mI Engineers, part H: 1aiirnal of Engineering in Medicine 224,
Transactianr an Ultrtnoniu Fermelectriu and Frequency cantral 54, 177. 171.191. httpsi//doi.org/10.1243/09s44119jeiins22.
191.https://doi.org/10.1109/tirtfc.201s.2s20492. Suslick, K. s. (1990). sonochernistry. science 247, 1439.144s.

Hockhani. N. (2013). spatia.Ternparal cantral t2jAmustic Ctzvittztiun Dur. httpsr//doi.org/10.1125/science.247.4949.1439.
ing High.lntenrity Eacuseal vltrasaiinal Therapy. PhD Thesis, University of ter 1-laar, G., and coussios, c. (2007). 1-Ligh intensity focused ultrasound:
oxford, oxford, UK. physical principles and devices. lnternatianal1aurnalajHypeitherrnia 23,

Hockham. N., Coussios, C. G., and Arora, M. (2010). A real.t.inie control. 99.104 https;//c1oi_org/10_1090/0255573050119,5139

as l Ai:i-.ii.iu:l=u Tliaiseiy 1 spring 2019

   26   27   28   29   30