Page 68 - Fall2020
P. 68

MUSIC TRAINING CHANGES THE BRAIN
Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., and Pantev, C. (2004). Musical training enhances automatic encoding of melodic contour and interval structure. Journal of Cognitive Neuroscience 16(6), 1010- 1021. https://doi.org/10.1162/0898929041502706.
Gaser, C., and Schlaug, G. (2003). Brain structures differ between musi- cians and non-musicians. Journal of Neuroscience 23(27), 9240-9245. Geiser, E., Sandmann, P., Jancke, L., and Meyer, M. (2010). Refine-
ment of metre perception - training increases hierarchical metre processing. European Journal of Neuroscience 32(11), 1979-1985. https://doi.org/10.1111/j.1460-9568.2010.07462.x.
George, E. M., and Coch, D. (2011). Music training and working memory: An ERP study. Neuropsychologia 49(5), 1083-1094. https://doi.org/10.1016/j.neuropsychologia.2011.02.001.
Gordon, E. (1989). Manual for the Advanced Measures of Music Audia- tion. GIA Publication, Chicago, IL.
Hannon, E. E., and Trehub, S. E. (2005a). Metrical categories in infancy and adulthood. Psychological Science 16(1), 48-55. https://doi.org/10.1111/j.0956-7976.2005.00779.x.
Hannon, E. E., and Trehub, S. E. (2005b). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America 102(35), 12639-12643. https://doi.org/10.1073/pnas.0504254102.
Harding, E. E., Sammler, D., Henry, M. J., Large, E. W., and Kotz, S. A. (2019). Cortical tracking of rhythm in music and speech. NeuroImage 185, 96-101. https://doi.org/10.1016/j.neuroimage.2018.10.037.
Herholz, S. C., and Zatorre, R. J. (2012). Musical training as a frame- work for brain plasticity: Behavior, function, and structure. Neuron 76(3), 486-502.
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., and Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience 29(10), 3019-3025. https://doi.org/10.1523/jneurosci.5118-08.2009.
Jakobson, L. S., Lewycky, S. T., Kilgour, A. R., and Stoesz, B. M. (2008). Memory for verbal and visual material in highly trained musicians. Music Perception 26(1), 41-55. https://doi.org/10.1525/mp.2008.26.1.41.
Koelsch, S., Schroger, E., and Tervaniemi, M. (1999). Superior pre-atten- tive auditory processing in musicians. NeuroReport 10(6), 1309-1313. Kraus, N., and Chandrasekaran, B. (2010). Music training for the
development of auditory skills. Nature Reviews Neuroscience 11(8),
599-605. https://doi.org/10.1038/nrn2882.
Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., Strait, D. L., Nicol,
T., and White-Schwoch, T. (2014). Music enrichment programs improve the neural encoding of speech in at-risk children. The Jour- nal of Neuroscience 34(36), 11913-11918. https://doi.org/10.1523/jneurosci.1881-14.2014.
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron 67(5), 713-727. https://doi.org/10.1016/j.neuron.2010.08.038.
Loui, P., and Belden, A. (2019). Music and the brain. Acoustics Today 15(4), 29-37. https://doi.org/10.1121/AT.2019.15.4.29.
Magne, C., Jordan, D. K., and Gordon, R. L. (2016). Speech rhythm sensitivity and musical aptitude: ERPs and individual differences. Brain and Language 153-154, 13-19. https://doi.org/10.1016/j.bandl.2016.01.001.
Marie, C., Delogu, F., Lampis, G., Belardinelli, M. O., and Besson, M. (2011a). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. Journal of Cognitive Neuroscience 23(10), 2701-2715. https://doi.org/10.1162/jocn.2010.21585.
Marie, C., Magne, C., and Besson, M. (2011b). Musicians and the metric structure of words. Journal of Cognitive Neuroscience 23(2), 294-305. https://doi.org/10.1162/jocn.2010.21413.
Maye, J., Werker, J. F., and Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cog- nition 82(3), B101-B111. https://doi.org/10.1016/s0010-0277(01)00157-3.
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., and Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science 22(11), 1425-1433. https://doi.org/10.1177/0956797611416999.
Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., and Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cerebral Cortex 19(3), 712-723. https://doi.org/10.1093/cercor/bhn120.
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., and Hoke, M. (1998). Increased auditory cortical representation in musi- cians. Nature 392(6678), 811-814. https://doi.org/10.1038/33918.
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., and Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12(1), 169-174. https://doi.org/10.1097/00001756-200101220-00041.
Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research 308, 98-108. http://dx.doi.org/10.1016/j.heares.2013.08.011.
Russo, F. (2020). Music beyond sound: Weighing the contributions of touch, sight, and balance. Acoustics Today 16(1), 37-45. https://doi.org/10.1121/AT.2020.16.1.37.
Schon, D., Magne, C., and Besson, M. (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psycho- physiology 41(3), 341-349. https://doi.org/10.1111/1469-8986.00172.x.
Strait, D. L., Kraus, N., Parbery-Clark, A., and Ashley, R. (2010). Musi- cal experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research 261(1-2), 22-29. https://doi.org/10.1016/j.heares.2009.12.021.
Vaughn, K. (2000). Music and mathematics: Modest support for the oft-claimed relationship. Journal of Aesthetic Education 34(3-4), 149- 166. https://doi.org/10.2307/3333641.
Virtala, P., and Partanen, E. (2018). Can very early music interventions promote at-risk infants' development? Annals of the New York Acad- emy of Sciences 1423, 92–101. https://doi.org/10.1111/nyas.13646.
Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roep- storff, A., and Østergaard, L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage 24(2), 560-564. https://doi.org/10.1016/j.neuroimage.2004.08.039.
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., and Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience 10(4), 420-422. https://doi.org/10.1038/nn1872.
Zhao, T. C., and Kuhl, P. K. (2015). Effect of musical experience on learning lexical tone categories. The Journal of the Acoustical Society of
America, 137(3), 1452-1463. http://dx.doi.org/10.1121/1.4913457. Zhao, T. C., and Kuhl, P. K. (2016). Musical intervention enhances infants’ neural processing of temporal structure in music and speech.
Proceedings of the National Academy of Sciences 113(19), 5212-5217.
https://doi.org/10.1073/pnas.1603984113.
Zhao, T. C., Lam, H. T. G., Sohi, H., and Kuhl, P. K. (2017). Neural
processing of musical meter in musicians and non-musicians. Neu- ropsychologia 106(Suppl. C), 289-297. https://doi.org/10.1016/j.neuropsychologia.2017.10.007.
                               68 Acoustics Today • Fall 2020

























































   66   67   68   69   70