Page 20 - Fall2021
P. 20

TOPOLOGICAL ACOUSTICS
effects of noise while maintaining the attractive sensitiv- ity properties associated with EPs.
Outlook
In this article, we have offered an overview of the powerful opportunities offered by topological concepts in acoustics to manipulate and control sound in fundamentally new ways. This emerging area of research takes inspiration from groundbreaking advances in condensed matter phys- ics, quantum mechanics, and photonics and leverages the properties of acoustic metamaterials to enable new forms of sound transport. Pseudospins emerging from geometrical asymmetries, external bias, spatiotemporal modulation, and nonlinearities can be leveraged to enable topological sound, benefiting a broad range of applications from sound trans- port robust to defects, noise, and disorder to multiplexing, information processing, data storage and manipulation, and sensing. We expect the field of topological acoustics to open disruptive directions for sound control, with an impact on basic science and applied technologies.
Acknowledgments
We are grateful to Ethan Wang and broadly to our col- laborators for numerous discussions on these topics. This work was supported by the National Science Foundation Emerging Frontiers in Research and Innovation (EFRI) program and the Department of Defense Multidisci- plinary University Research Initiatives (MURI) program.
References
Bender, C. M., and Boettcher, S. (1998). Real spectra in non-Hermitian Ham- iltonians having PT-symmetry. Physical Review Letters 80, 5243-5246.
Boechler, N., Theocharis, G., and Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials 10, 665-668.
Bringuier, S., Swinteck, N., Vasseur, J. O., Robillard, J. F., Runge, K., Muralidharan, K., and Deymier, P. A. (2011). Phase-controlling phononic crystals: Realization of acoustic Boolean logic gates. The Journal of the Acoustical Society of America 130, 1919-1925.
Cha, J., and Daraio, C. (2018). Electrical tuning of elastic wave propagation in nanomechanical lattice at MHz frequencies. Nature Nanotechnology 13, 1016-1020.
Cha, J., Kim, K. W., and Daraio, C. (2018). Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229-233. Chen, S., Ozdemir, K., Zhao, G., Wiersig, J., and Yang, L., (2017). Exceptional
points enhance sensing in an optical microcavity. Nature 548, 192-196. Cheng, K., Zhang, W., Wei, Z., Fan, Y., Xu, C., Wu, C., Zhang, X., and Li, H. (2020). Simulate Deutsch-Jozsa algorithm with metamaterials.
Optics Express 28, 16230-16243.
Coulais, C., Sounas, D. L., and Alù, A. (2017). Static non-reciprocity
using mechanical metamaterials. Nature 542, 461-464.
Darabi, A., Ni, X., Leamy, M., and Alù, A. (2020). Reconfigurable
Floquet elastodynamic topological insulator based on syn- thetic angular momentum bias. Science Advances 6, eaba8656. https://doi.org/10.1126/sciadv.aba8656.
Deymier, P. A., and Runge, K. (2017). Sound Topology, Duality, Coher- ence and Wave-Mixing: An Introduction to the Emerging New Science of Sound. Springer International Publishing, Heidelberg, Germany.
Deymier, P. A., Runge, K., and Hasan, M. A. (2020). Exponentially complex nonseparable states in planar arrays of nonlinearly coupled one-dimensional elastic waveguides. Journal of Physics Communica- tions 4, 085018. https://doi.org/10.1088/2399-6528/abb0f0.
Dowling, P., and Milburn, G. J. (2003). Quantum technology: The second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, 1655-1674. https://doi.org/10.1098/rsta.2003.1227.
Fleury, R., Khanikaev, A., and Alù, A. (2016). Floquet topological insulators for sound. Nature Communications 7, 11744. https://doi.org/10.1038/ncomms11744.
Fleury, R., Sounas, D. L., and Alù, A. (2015). An invisible acoustic sensor based on parity-time symmetry. Nature Communications 6, 5905. https://doi.org/10.1038/ncomms6905.
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R., and Alù, A. (2014). Sound isolation and giant linear non-reciprocity in a com- pact acoustic circulator. Science 343, 516-519.
Hackett, L., Miller, M., Brimigion, F., Dominguez, D., Peake, G., Tauke-Pedretti, A., Arterburn, S., Friedmann, T. A., and Eichenfield, M. (2021). Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nature Commu- nications 12, 2769. https://doi.org/10.1038/s41467-021-22935-1.
Hadad, Y., Khanikaev, A., and Alù, A. (2018). Self-induced topological protection in nonlinear circuit arrays. Nature Electronics 1, 178-182. Haldane, F. D. M., (1988). Model for a quantum Hall effect without
Landau levels: Condensed-matter realization of the parity anomaly.
Physical Review Letters 61, 2015-2018.
Hasan, M. A., Calderin, L., Lata, T., Lucas, P., Runge, K., and Deymier,
P. A. (2019). The sound of Bell states. Communications Physics 2, 106.
https://doi.org/10.1038/s42005-019-0203-z.
Hodaei, H., Hassan, A. U., Wittek, S., Garcia-Gracia, H., El-Ganainy,
R., Christodoulides, D. N., and Khajavikhan, M. (2017). Enhanced
sensitivity at higher-order exceptional points. Nature 548, 187-191. Jozsa, R., and Linden, N. (2003). On the role of entanglement in quantum-computational speed-up. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 459, 2011.
https://doi.org/10.1098/rspa.2002.1097.
Khanikaev, A. B., Fleury, R., Mousavi, H., and Alù, A. (2015). Topo-
logically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nature Communications 6, 8260. https://doi.org/10.1038/ncomms9260.
Kononchuk, R., and Kottos, T. (2020). Orientation-sensed optomechani- cal accelerometers based on exceptional points. Physical Review Research 2, 023252. https://doi.org/10.1103/PhysRevResearch.2.023252.
Kord, A., Sounas, D., and Alù, A. (2020). Microwave nonreciprocity. Proceedings of IEEE 108, 1728-1758.
Langbein, W. (2018). No exceptional precision of exceptional-point sensors. Physical Review A 98, 023805. https://doi.org/10.1103/PhysRevA.98.023805.
Lata, T., Deymier, P. A., Runge, K., Le Tourneau, F. M., Ferriere, R., and Huettmann, F. (2020). Topological acoustic sensing of spatial patterns of trees in a model forest landscape. Ecological Modelling 419, 108964. https://doi.org/10.1016/j.ecolmodel.2020.108964.
Li, F., Anzel, P., Yang, J., Kevrekidis, P. G., and Daraio, C. (2014). Gran- ular acoustic switches and logic elements. Nature Communications 5, 5311. https://doi.org/10.1038/ncomms6311.
Miri, M. A., and Alù, A. (2019). Exceptional points in optics and photon- ics. Science 363, eaar709. https://doi.org/10.1126/science.aar7709.
Ni, X., Weiner, M., Alù, A., and Khanikaev, A. B. (2018). Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nature Materials 18, 113-120.
Raghu, S., and Haldane, F. D. M. (2008). Analogs of quantum-Hall- effect edge states in photonic crystals. Physical Review A 78, 033834. https://doi.org/10.1103/PhysRevA.78.033834.
               20 Acoustics Today • Fall 2021




















































   18   19   20   21   22