Page 50 - Summer 2021
P. 50
MOBILE EARTHQUAKE RECORDING
References
Bonnieux, S., Cazau, D., Mosser, S., Blay-Fornarino, M., Hello, Y., and Nolet, G. (2020). MeLa: A programming language for a new multidisciplinary oceano- graphic float. Sensors 20(21), 6081. https://doi.org/10.3390/s20216081.
Bradley, D. L., and Nichols, S. M. (2015). Worldwide low-frequency ambient noise. Acoustics Today 11(1), 20-26.
Bradner, H., de Jerphanion, L. G., and Langlois, R. (1970). Ocean microseism measurements with a neutral buoyancy free-floating midwater seismometer. Bulletin of the Seismological Society of Amer- ica 60, 1139-1150.
Dahl, P. H., Miller, J., Cato, D. H., and Andrew, R. K. (2007). Under- water ambient noise. Acoustics Today 3(1), 23-33.
Deane, G. B., Glowacki, O., Stokes, M. D., and Pettit, E. C. (2019). The underwater sounds of glaciers. Acoustics Today 15(4), 12-19. https://doi.org/10.1121/AT.2019.15.4.12.
French, S. W., and Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95-99. https://doi.org/10.1038/nature14876.
Gould, W. J. (2005). From Swallow floats to Argo—The development of neutrally buoyant floats. Deep Sea Research Part II: Topical Studies in Ocean- ography 52(3-4), 529-543. https://doi.org/10.1016/j.dsr2.2004.12.005.
Hello, Y., Ogé, A., Sukhovich, A., and Nolet, G. (2011). Modern mer- maids: New floats image the deep Earth. Eos, Transactions American Geophysical Union 92(40), 337-338. https://doi.org/10.1029/2011EO400001.
Jones, J. A., Chao, Y., Fratantoni, D. M., Zedelmair, M. M., Willis, R. E., and Leland, R. S. (2019). Environmental Thermal Energy Conver- sion. US Patent No. 10,443,581, October 15, 2019. Available at https://seatrec.com/wp-content/uploads/2020/08/seatrecUS10443581B2-.pdf.
Joubert, C., Nolet, G., Sukhovich, A., Ogé, A., Argentino, J. F., and Hello, Y. (2015). Hydrophone calibration at very low frequencies. Bulletin of the Seismological Society of America 105(3), 1797-1802. https://doi.org/10.1785/0120140265.
Matsumoto, H., Jones, C., Klinck, H., Mellinger, D. K., Dziak, R. P., and Meinig, C. (2013). Tracking beaked whales with a passive acous- tic profiler float. The Journal of the Acoustical Society of America 133(2), 731-740. https://doi.org/10.1121/1.4773260.
Montelli, R., Nolet, G., Dahlen, F. A., and Masters, G. (2006). A cata- logue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems 7(11), Q11007. https://doi.org/10.1029/2006GC001248.
Nolet, G., Hello, Y., van der Lee, S., Bonnieux, S., Ruiz, M. C., Pazmino, N. A., Deschamps, A., Regnier, M. M., Font, Y., Chen, Y. J., and Simons, F. J. (2019). Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Scientific Reports 9, 1-12. https://doi.org/10.1038/s41598-018-36835-w.
Riser, S. C., Nystuen, J., and Rogers, A. (2008). Monsoon effects in the Bay of Bengal inferred from profiling float-based measurements of wind speed and rainfall. Limnology and Oceanography 53(5), 2080- 2093. https://doi.org/10.4319/lo.2008.53.5_part_2.2080.
Riser, S. C., Swift, D., and Drucker, R. (2018). Profiling floats in SOCCOM: Technical capabilities for studying the Southern Ocean. Journal of Geophysical Research 123(6), 4055-4073. https://doi.org/10.1002/2017JC013419.
Romanowicz, B. (2008). Using seismic waves to image Earth’s struc- ture. Nature 451, 266-268. https://doi.org/10.1038/nature06583.
Simon, J. D., Simons, F. J., and Nolet, G. (2020). Multiscale estimation of event arrival times and their uncertainties in hydroacoustic records from autonomous oceanic floats. Bulletin of the Seismological Society of America 110(3), 970-997. https://doi.org/10.1785/0120190173.
Simons, F. J., Nolet, G., Babcock, J. M., Davis, R. E., and Orcutt, J. A., (2006). A future for drifting seismic networks. Eos, Transactions American Geophysi- cal Union 87(31), 305-307. https://doi.org/10.1029/2006EO310002.
Simons, F. J., Nolet, G., Georgief, P., Babcock, J. M., Regier, L. A., and Davis, R. E. (2009). On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans. Journal of Geophysical Research: Solid Earth 114(85), B05307. https://doi.org/10.1029/2008JB006088.
Sladen, A., Rivet, D., Ampuero, J. P., Barros, L. D., Hello, Y., Calbris, G., and Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Com- munications 10, 5777. https://doi.org/10.1038/s41467-019-13793-z. Suetsugu, D., and Shiobara, H. (2014). Broadband ocean-bottom seis- mology. Annual Review of Earth and Planetary Sciences 42, 27-43. https://doi.org/10.1146/annurev-earth-060313-054818.
Sukhovich, A., Bonnieux, S., Hello, Y., Irisson, J.-O., Simons, F. J., and Nolet, G. (2015). Seismic monitoring in the oceans by autonomous floats. Nature Communications 6, 8027. https://doi.org/10.1038/ncomms9027.
Sukhovich, A., Irisson, J.-O., Simons, F. J., Ogé, A., Hello, Y., Des- champs, A., and Nolet, G. (2011). Automatic discrimination of underwater acoustic signals generated by teleseismic P-waves: A probabilistic approach. Geophysical Research Letters 38(18), L18605. https://doi.org/10.1029/2011GL048474.
TenCate, J. A., and Remillieux, M. (2019). The peculiar acoustics of rocks. Acoustics Today 15(2), 29-35. https://doi.org/10.1121/AT.2019.15.2.29.
Tromp, J. (2020). Seismic wavefield imaging of Earth’s interior across scales. Nature Reviews Earth & Environment 1, 40-53. https://doi.org/10.1038/s43017-019-0003-8.
van der Hilst, R. D., Widiyantoro, S., and Engdahl, E. R. (1997). Evi- dence for deep mantle circulation from global tomography. Nature 386, 578-584. https://doi.org/10.1038/386578a0.
Wu, W., Zhan, Z., Peng, S., Ni, S., and Callies, J. (2020). Seismic ocean thermome- try. Science 369(6510), 1510-1515. https://doi.org/10.1126/science.abb9519.
About the Authors
Frederik J. Simons
fjsimons@alum.mit.edu
Department of Geosciences
Guyot Hall
Princeton, New Jersey 08540, USA
Frederik J. Simons is a geophysicist
at Princeton University (Princeton, NJ), interested in the seismic, mechanical, thermal, and magnetic properties of Earth and the terrestrial planets. He earned bachelor’s and master’s degrees in geology from KU Leuven (Leuven, Belgium), and a PhD in seismology from MIT
(Cambridge, MA). He enjoys analyzing complex, large, and het- erogeneous geophysical datasets and designs mathematical and computational inverse methods, and statistical techniques to do so. No amount of sophistication can cure a fundamental data limitation; hence his involvement in developing floating hydrophones to open up the sparsely instrumented oceanic domains for global seismic tomography.
50 Acoustics Today • Summer 2021