Page 40 - Spring2022
P. 40

 EARLY AUDITORY EXPERIENCE
Schreiner, C. E., and Winer, J. A. (2007). Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56(2), 356-365. https://doi.org/10.1016/j.neuron.2007.10.013.
Sheikh, A., Meng, X., Liu, J., Mikhailova, A., Kao, J. P. Y., McQuillen, P. S., and Kanold, P. O. (2019). Neonatal hypoxia-ischemia causes functional circuit changes in subplate neurons. Cerebral Cortex 29(2), 765-776. https://doi.org/10.1093/cercor/bhx358.
Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K., and Kanold, P. O. (2012). Subplate neurons promote spindle bursts and thalamocortical pattern- ing in the neonatal rat somatosensory cortex. Journal of Neuroscience 32(2), 692-702. https://doi.org/10.1523/JNEUROSCI.1538-11.2012.
Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., and Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature 450(7166), 50-55. https://doi.org/10.1038/nature06233.
Viswanathan, S., Bandyopadhyay, S., Kao, J. P. Y., and Kanold, P. O. (2012). Changing microcircuits in the subplate of the developing cortex. Journal of Neuroscience 32(5), 1589-1601. https://doi.org/10.1523/JNEUROSCI.4748-11.2012.
Wang, X. (2018). Cortical coding of auditory features. Annual Review of Neuroscience 41, 527-552. https://doi.org/10.1146/annurev-neuro-072116-031302.
Wess, J. M., Isaiah, A., Watkins, P. V., and Kanold, P. O. (2017). Sub- plate neurons are the first cortical neurons to respond to sensory stimuli. Proceedings of the National Academy of Sciences of the United States of America 114(47), 12602-12607. https://doi.org/10.1073/pnas.1710793114.
Zhang, L. I., Bao, S., and Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience 4(11), 1123-1130. https://doi.org/10.1038/nn745.
Zhang, L. I., Bao, S., and Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences of the United States of
America 99(4), 2309-2314. https://doi.org/10.1073/pnass.261707398. Zhao, C., Kao, J. P. Y., and Kanold, P. O. (2009). Functional excitatory
microcircuits in neonatal cortex connect thalamus and layer 4. Jour- nal of Neuroscience 29(49), 15479-15488. https://doi.org/10.1523/JNEUROSCI.4471-09.2009.
  Learn more at:
acousticstoday.org/ ATcollections
      The Journal of the Acoustical Society of America
Reflections
Don’t miss Reflections, The Journal of the Acoustical Society of America’s series that takes a look back on historical articles that have had a significant impact on the science and practice of acoustics.
   See these articles at:
acousticstoday.org/forums-reflections
      About the Author
 Patrick O. Kanold
pkanold@jhu.edu
Department of Biomedical Engineering Johns Hopkins University School of Medicine
733 N. Broadway Avenue, Miller 379 Baltimore, Maryland 21205, USA
Patrick O. Kanold is currently a professor in the Biomedical Engineering Department, Johns Hopkins University, Bal- timore, Maryland. He holds a Diplom-Ingenieur (Dipl.-Ing; MSc) from the Technical University Berlin and a PhD from
Johns Hopkins University. His laboratory studies the neural circuits in the developing and adult auditory cortex of ani- mals and how sensory experiences shape these circuits using advanced imaging and physiological methods.
    40 Acoustics Today • Spring 2022








































































   38   39   40   41   42