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Smart People Behaving  
Foolishly: Lessons from a  
Career in Scientific Research

Most management decisions involve politics, so they are often based  
more on fear and ego than principle. The biggest fear is “looking bad.”

Introduction
The focus of this article is on things I wish someone had told me when I was a 
young person embarking on a career in scientific research. My specialty is statisti-
cal signal processing for applications in acoustics, electromagnetics, and particle 
physics. This includes underwater acoustics, ultrasonic nondestructive testing, 
bioacoustics, and speech processing. However, although most of the ideas in this 
article are relevant to science and engineering, they are also relevant to life in gen-
eral. The lessons I have learned have been valuable to me, but it would have been 
wonderful if I had not had to learn them via the “school of hard knocks.” By shar-
ing lessons here, my hope is that at least a few people might be saved the trouble 
of learning them the hard way.

As humans, we are all susceptible to some level of poor judgment at one time 
or another. Murphy’s Law is alive and well in scientific and engineering systems. 
Over my career, I have served in various positions, including electronics techni-
cian, staff scientist, principal investigator, technology leader, program leader, and 
director of research. At every level, I have made my share of foolish mistakes and 
I have observed countless brilliant colleagues behaving in ways that are decidedly 
not brilliant. I call this “smart people behaving foolishly.” 

Aside from sociopathic ethical breaches, I believe the cause of smart people behav-
ing foolishly is the general frailty of human nature, especially the ego. We become 
overwhelmed by excessive demands, and we make too many decisions based on 
fear rather than principle. We live in a society obsessed with finding fault and as-
signing blame, yet everybody wants to avoid “looking bad.” In addition, schools 
simply cannot teach us all the practical lessons that we will need in our careers.

In this article, I take a playful look at the practical “technical folklore” that is nec-
essary for real-world laboratory work but is rarely found in textbooks or journals. 
I emphasize the assumptions, limitations, and trade-offs associated with various 
signal-processing algorithms and provide “rules of thumb” for use in the labora-
tory. 

My goal is to explore the effects of human nature on projects in Science, Technol-
ogy, Engineering, and Mathematics (STEM) and demonstrate the concepts with 
“horror stories” from actual real-world projects. In doing so, I use quotes from 
others as well as my own “Clark’s Laws” to have some fun with the nasty problems 
that keep many of us up at night. 
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H. L. Mencken (1880-1956)

Explanations exist; they have existed for all time; there is 
always a well-known solution to every human problem - 

neat, plausible, and wrong (Mencken, 1982).

Human Nature/Ego Issues
The dark and absurd side of human nature, including the 
human ego, is the source of most career problems. This is 
why the cartoon “Dilbert” (Adams, 1989) is popular. Tech-
nical problems are often easier to solve than problems with 
human beings.

Clark’s Law of Career Egos

Most career problems are caused by someone’s ego.  
Make sure it is not yours. Do a “self-ego-ectomy” and focus 

on the highest good (Clark, 2014, 2016).

Fred Followill, 
Lawrence Livermore National Laboratory Geophysicist (Retired)

Nobody believes a theorist - save another theorist.  
Everybody believes an experimentalist - save another  

experimentalist (Followill, 1980).

Ego problems often rear their ugly heads when new ideas 
are published or otherwise presented to the technical com-
munity at large. 

Arthur Schopenhauer (1788-1860)

All truth passes through three stages: First, it is ridiculed, 
Second, it is violently opposed, and Third, it is accepted  

as self-evident.

Howard Aiken, 
American Computer Engineer and Mathematician (1900-1973)

Don’t worry about people stealing your ideas. If your  
ideas are any good, you’ll have to ram them down  

peoples’ throats (Weiss, 1988).

The human tendency to underestimate the difficulty and 
scope of projects routinely plays havoc with scientific enter-
prises.

Fundamental Principle of Projects

Time, Quality, Cost (or Faster, Better, Cheaper): We can-
not maximize all three of these conditions simultaneously. 
Once any two are chosen, the third is automatically deter-

mined (“pick two”) (Clayton, 2014).

Meskimen’s Law of Time

There is never enough time to do it right, but there is  
always enough time to do it over again (Hoover, 2007).

Clark’s Law of Project Time

Estimate the actual, realistic time required to finish a 
project as follows: Make your most generous estimate, 

assuming Murphy’s Law is in full effect. (2) Multiply by pi  
(Clark, 2014, 2016).

The fundamental principle of projects (sometimes known as 
the time-cost-quality triangle) expresses the practical con-
straints on projects, and it is routinely violated in projects 
of all kinds. Because there is no free lunch, every project has 
its trade-offs. However, it is easy to believe and proclaim to 
our sponsors that we are faster, better, and cheaper than our 
competitors. As Dirty Harry (Warner Bros., 1973) says, “A 
man’s gotta’ know his limitations.”

When I was a young scientist, I saw a “joke” poster about 
the “Six Phases of a Project” posted on the bulletin board 
of one of my senior colleagues (see Figure 1). As my career 
progressed, I realized that this was not a joke but a deadly 
serious admonition. 

After years of watching countless projects and people being 
crushed in the gears of the six phases, I learned my lesson. 
When someone asks me to work on a project, I first assess 
the current phase of the project. If it is in Phase III or higher, 
I do my best to avoid working on the project. I have seen 
many innocent people blamed for project shortcomings to 
protect someone else (usually a manager) from looking bad. 
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Horror Story About Faster, Better, Cheaper
During the 1990s, a popular slogan in various federal agen-
cies was faster, better, cheaper. A manager instructed me to 
use that phrase when talking with our sponsors. I refused 
and explained that it is foolish to violate the Fundamental 
Principle of Projects. I got a “talking to” about my attitude, 
and I “took a beating” for it. I was told, “That’s how you have 
to talk to sponsors now.” 

Another agency, the National Aeronautics and Space Admin-
istration, launched the $125 million Mars Climate Orbiter 
Spacecraft that crashed into Mars (National Aeronautics and 
Space Administration, 1999). The project team forgot to get 
mixed units of distance (English and metric) to jibe in their 
software. Lockheed used English units, and the Jet Propul-
sion Laboratory used metric units. It is no wonder that the 
spacecraft crashed. The project deliverables may have been 
faster and cheaper, but they were clearly not better. Smart 
people behaving foolishly.

Common Signal-Processing “Gotchas”
Signal Sampling 
Errors in sampling continuous signals to create discrete time 
signals are very common. I have seen far too many projects 
that used aliased signals because the people acquiring the 
data did not pay enough attention to the physics of the prob-
lem and did not understand the Nyquist sampling theorem 
(McGillem and Cooper, 1974). In a nutshell, if the sampling 
period (in seconds) is denoted by T, then the sampling fre-

quency is ƒs = 1/T (in hertz), and ƒs  must be greater than or 
equal to twice the bandwidth (B) of the analog signal to pre-
serve the information in the signal or ƒs  ≥ 2B.

Horror Story About Signal Sampling
I was asked to estimate the system response of a shock-
hardened recorder that measured accelerometer signals. The 
data-acquisition team showed me accelerometer measure-
ments from a centrifuge, but the signals made no sense to 
me. I asked how they chose the sampling rate on their digi-
tizer. The answer was that they adjusted the sampling period 
knob until the time domain plots “looked good.” 

I got a spectrum analyzer oscilloscope, measured the band-
width of the analog signals, and calculated the maximum 
sampling period they could use. It turned out that their 
measurements were undersampled and aliased by a factor 
of more than 100. Once I adjusted the digitizer’s sampling 
period properly, the data made good sense and my later pro-
cessing results were able to solve an important engineering 
problem. The real horror of this story is that they had been 
digitizing their signals improperly for many years. Smart 
people behaving foolishly.

Abuses of Fourier Spectra
I have witnessed countless miscalculations, misinterpreta-
tions, misuses, and abuses of the discrete Fourier transforms 
(DFTs) of signals. 

Horror Story About Fourier Magnitude
Some scientists proposed a $2 million project to study some 
subtle “bumps and wiggles” in the magnitude of the DFT of 
a measured signal from an experiment. They believed that 
they knew the physics that caused the wiggles and wanted to 
test their hypotheses. I was asked to review the project pro-
posal. I commented that the wiggles looked to me a lot like 
Gibbs phenomena (McGillem and Cooper, 1974). When the 
DFT of a temporally truncated signal (or one with a jump 
discontinuity) is computed, the DFT contains artifacts in the 
form of spectral wiggles, often called “leakage.” 

When I computed the DFT using a tapered window on their 
data, the bumps and wiggles went away. I was never asked to re-
view another of their proposals. Smart people behaving foolishly.

Data Chasing
Generally, the goal of signal processing is to allow us to 
interpret the meaning of the signals and use the signals to 
solve problems.

Figure 1. The six phases of a project are real, and they apply espe-
cially well to large projects. This “joke” should be taken very seriously. 
Human nature is to blame others for one’s own shortcomings, and 
innocent people are often used as “fall guys.” Derived from a poster by 
Decision Technology Corporation, Kensington, MD, 1976.

Smart People Behaving Foolishly
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Richard Hamming, 
Professor of Electrical Engineering, Naval Postgraduate 

School, Monterey, CA (1915-1998)

The business of computing is insight, not numbers 
(Hamming, 1973).

George E. P. Box, 
Professor of Statistics, University of Wisconsin (1919-2013)

Essentially, all models are wrong, but some are useful. 
Remember that all models are wrong. The practical 

question is how wrong do they have to be to not be useful 
(Draper, 1987).

It is tempting to use the latest cool fad algorithm that is 
making its way through the literature. However, many times 
people do this while putting insufficient priority on the fun-
damental physics and signal processing of the problem. 

“Data chasing” is a term coined by my friend, colleague, and 
mentor Dr. James V. Candy of the Lawrence Livermore Na-
tional Laboratory (LLNL). Data chasing is what one does 
when (1) one knows little or nothing about the physical 
processes that created the data being processed (no mod-
els or prior knowledge), (2) one has no access to controlled 
experiments in which the signal-processing “answer” is 
known, and/or (3) one applies various filters, DFTs, and ad 
hoc signal-processing algorithms to the data, yet one cannot 
explain the meaning of the results. 

Data chasing and the use of ad hoc algorithms can have very 
serious consequences, including the following. (1) One does 
not understand the meaning of the processing results. The 
results are often inconclusive and/or not useful. (2) Results 
are often not repeatable by other researchers. (3) If the algo-
rithms work, one does not know why they worked. If the al-
gorithms do not work, one does not know why they did not 
work. (4) One does not know what to do to make things bet-
ter, yet by this time, one has probably exhausted one’s time 
and money for the project. (5) The results are usually not ex-
tensible. Model-based signal processing can often mitigate 
these shortcomings of data chasing (Candy, 2006).

Data chasing leads to enormous waste and stress. Countless 
times, people have come to me near the end of a project with 
a project review scheduled in a few days or weeks. They typi-
cally ask me, “What signal-processing magic can you do to 
save the project?” Usually, the measurements are inadequate 
for processing. 

First, I tell them that I'll apply my special "SESP (sow's ear-
to-silk purse) Algorithm." After we chuckle, I tell them that 
the experiment is flawed, the data are inadequate, this is a 
Phase III or IV project, and they really should have includ-
ed me in the experiment planning at the beginning of the 
project. I tell them that I do not work on Phase III projects. 
Of course, that gets me nowhere, and I end up “busting my 
chops” during nights and weekends in a vain attempt to put 
a last-minute Band-Aid on a gaping wound. Finally, when 
the project cannot be saved, I get blamed.

Clark’s Law of Heroic Efforts

If you “bust your chops” in an heroic effort, 
you will usually be repaid with compound ingratitude 

(Clark, 2016).

When a manager asks you to do something beyond the call 
of duty to save him/her from looking bad or to do something 
absurd or wrong in some way, he/she usually says something 
like, “I’ll remember this at raise time.” Don’t believe it. My 
colleagues and I have many horror stories to the contrary. 
Later, the manager usually says something like, “I never said 
that!” Also, the ingratitude is not simple. It is exponential 
(compound ingratitude).

Horror Story About an Heroic Effort
Nikola Tesla came to the United States in 1884 from Croatia 
and was hired by Thomas Edison. After about a year, Edison 
was impressed by Tesla’s abilities and offered to give him a 
$50,000 bonus if he could create an improved design for Edi-
son’s direct current (DC) dynamos. After months of work, 
Tesla delivered the desired solution and requested his bonus. 
Edison replied, “Tesla, you don’t understand our American 
humor.” Tesla resigned soon after and went on to create a vast 
legacy of important inventions (History.com Staff, 2009).

The ways to avoid data chasing (aside from avoiding Phase 
III projects) include the following. (1) Study, really study, 
the physics/science of the problem and use all possible prior 
knowledge. (2) Build and validate models of the physical 
process and the measurement system that produce the mea-
sured signals. Do simulation studies. Use first-principles 
models, nonparametric models, or parametric models that 
give your insight into the measurements. (3) Involve a statis-
tical signal-processing specialist in the very beginning parts 
of the project, including basic system design and especially 
experiment design. The performance of signal-processing 
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algorithms is only as good as the quality of the input data. 
Of course, there is rarely enough funding to do all of this 
important work.

Clark’s Law of Garbage In, Garbage Out

Signal processing algorithms are garbage-in, garbage-out 
devices (Clark, 2014, 2016).

Clark’s Law of Measurement Quality

The best “signal processing” is a good experiment with 
good measurements (Clark, 2014, 2016).

Clark’s Law of Signal Preprocessing

You’ll spend about 80% to 90% of your project effort 
acquiring, modeling, and preparing your data for your 

main signal processing algorithm (if you do it right) 
(Clark, 2014, 2016).

Important Algorithm Assumptions  
Are Often Overlooked
Every signal processing algorithm is derived under a set of 
assumptions. If these assumptions are not met by the real-
world system under analysis, something must be done to 
bring the algorithms in line with physical reality. Nonethe-
less, people often pay little attention to the algorithm as-
sumptions when processing signals. 

System Linearity
Linear systems obey the superposition principle (McGillem 
and Cooper, 1974). Consider a system with system response 
h(t). Let t denote the continuous time variable and a and b 
denote real constants. For a system to be linear, if input x1(t) 
produces output y1(t) and input x2(t) produces output y2(t), 
then input ax1(t)+bx2(t) must produce ay1(t)+by2(t). Thus, 
the scaling and additive properties must hold. If they do not, 
then the system is nonlinear. 

In practical systems, one can often construct experiments to 
test system linearity using this definition. However, in my 
experience, almost nobody bothers to conduct such an ex-
periment. People tend to assume that their system is linear 
whether it is or not. Then they apply signal-processing algo-
rithms that assume system linearity, obtain bad results, and 
wonder what went wrong. Smart people behaving foolishly.

Note that in a linear system, zero input must yield zero output. 
This is often overlooked in practice. For example, consider a 
system with the following system model. Let y(t)=4x(t)+5. 
If we look at this equation strictly in a mathematical sense, 
we see that it is a linear equation. However, viewing it as a 
system model, we see that if the input is zero, then the output 
is 5. The system, by definition, is not linear. In the real world, 
the constant 5 implies the existence of an energy source of 
some kind, so the system is active, not passive. Such a system 
is known as “incrementally linear” (McGillem and Cooper, 
1974). If one is working with an incrementally linear system 
and using algorithms that assume system linearity, then it 
is important to preprocess the signals to remove any biases 
(means) or trends. 

Linearity Horror Story About Computing 
the Autocorrelation of a Signal with Bias
Dr. James V. Candy of the LLNL contributed this story. Early 
in his career, he computed the autocorrelation of a signal 
measured at the output of an apparently linear system and 
obtained results that made no sense. After some time, he re-
alized that the measured signal contained a bias (a nonzero 
mean). Clearly, the system was actually incrementally linear. 
When he removed the mean of the signal before computing 
the autocorrelation, the result made sense and was useful. 
Note that the autocovariance includes mean removal as part 
of the calculation (Papoulis and Pillai, 2002).

System Time Invariance
Most signal-processing algorithms assume that the system 
is linear and time invariant. A system is time invariant if 
a temporal shift of t0 seconds in the input signal causes a 
temporal shift of t0 seconds in the output signal. Thus, a lin-
ear system input x(t – t0) will produce output y(t – t0). Note 
that a time-invariant system has a constant gain, but a time-
varying system has a time-varying gain. This means that a 
time-varying system is also nonlinear over time. If a system 
is time varying, then the measured signals are generally non-
stationary. In this case, adaptive algorithms are appropriate 
(Candy, 2006).

Observability
In signal processing, we are often concerned with estimating 
models of systems. Observability is a measure of how well 
the internal states of a system can be inferred from knowl-
edge of its external outputs (Kailath, 1980). Generally, the 
measurements must be at least as numerous as the internal 
states. All too often, scientists and engineers do not take this 
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into account when designing systems and experiments. I 
have seen it many times.

Horror Story About Observability
I was invited to work on a multiyear project that was nearing 
completion. The goal was to use a cubic array of six acceler-
ometers to replace gyroscopes in a space vehicle. Six accel-
erometers were used because the system kinematics could 
be modeled as a sixth-order nonlinear ordinary differential 
equation (ODE). Later, the team realized that ODE solvers 
do not work well with noisy measurements, so I was asked to 
build a recursive estimator for the linear and angular veloci-
ties of the vehicle. A two-axis magnetometer was available 
but could only measure two angular velocities. I showed that 
the system was not observable because not enough measure-
ments were available to estimate the six system states. All I 
could do was build an extended Kalman filter and use simu-
lations to show what could have been done if enough mea-
surements had been available. 

Gaussianity
Measured signals are modeled as stochastic processes with 
particular probability density functions (Papoulis and Pillai, 
2002). Many (if not most) signal processing algorithms are 
derived assuming that the stochastic processes are Gaussian 
distributed, mostly because the Gaussian assumption makes 
algorithm derivation mathematically tractable. In real-world 
applications, however, we often measure non-Gaussian dis-
tributed signals that must be processed. 

In my experience, very few people ever test their signals for 
Gaussianity. Most people go ahead and apply algorithms de-
rived for Gaussian signals without giving the data distribu-
tion any consideration. Later, they wonder why the signal-
processing algorithms produced poor results. I advocate that 
the data should be tested for Gaussianity at the beginning of 
the project (Crawley, 2012; Clark, 2014). 

Stationarity
Many signal-processing algorithms are derived assuming 
that the signals are statistically wide-sense stationary (Pa-
poulis and Pillai, 2002). Many problems are caused when 
people apply these algorithms to nonstationary signals. A 
real stochastic process x(t) is called wide-sense stationary if 
its mean (expected value) is constant, E{x(t)}= η, and its au-
tocorrelation R(τ)=E{x(t)x(t+τ)} depends only on the time 
shift τ = t1–t2 . Clearly, transient signals (e.g., broadband 
pulses) are not stationary, yet we routinely process transient 

signals using algorithms derived for stationary signals be-
cause these algorithms are tractable. However, we must un-
derstand that the processing results may be surprising and/
or not useful (Candy et al., 1986).

Inverse Problems
Two of the most common inverse problems in signal pro-
cessing are the system identification and deconvolution 
problems, as depicted in Figure 2.

In the absence of noise, if the signal functions are invertible, 
inverse problems are often easy to solve. However, in real-
world problems with noisy measurements and functions 
that are often not invertible, inverse problems are very diffi-
cult (Candy et al., 1986). Most often in practice, the problem 
is “ill posed” and/or “ill conditioned.” 

In a well-posed problem, a solution exists, the solution is 
unique, and the solution’s behavior changes continuously 
with the initial conditions. Ill-posed problems are highly 
sensitive to changes in the output data, so there may exist 
an infinite number of possible solutions (the solution is not 
unique). In addition, we discretize the data for solution on a 
computer, so the solutions can suffer from numerical insta-
bility when solved with finite precision. Even if the problem 
is well posed, it may be ill conditioned, meaning that a small 
error in the initial data can result in much larger errors in 
the final solutions (see Figure 3).

Figure 2. Many practical inverse problems have this form. In system 
identification, given measurements of the input x(t) and the output 
u(t), we wish to estimate the system function h(t). In deconvolution, 
given measurements of the system function h(t) and the output u(t), 
we wish to estimate the input x(t) .
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I have seen a frightening number of projects in which people 
have not recognized the ill-posed and ill-conditioned nature 
of the inverse problems they were studying. Many of the 
project results have been useless or worse. Typically, people 
like to divide the DFTs of the signals. This is a very bad idea 
(Candy et al., 1986). The approach to dealing with ill-posed 
and ill-conditioned problems is generally called “regular-
ization.” This involves defining an associated well-posed 
problem, the solution of which is well behaved and offers 
a reasonable approximation to the solution of the ill-posed 
problem (Candy et al., 1986). 

Statistical Detection/Classification/ 
Target Recognition Issues
The technical area in which I have witnessed the largest 
number and most serious cases of algorithm abuse is in 
detection/classification/target recognition problems. Many 
groups of people embark on such problems without hav-
ing studied detection/classification theory (Van Trees, 1968; 
Duda et al., 2001). The hubris is startling and the results are 
disastrous. Nonetheless, the problem is ubiquitous.

Poor Experiment Design
When using a supervised classifier, the training and testing 
data sets must be separate and representative of each other. 
Most of all, the classifier must not be tested using the same 
data set on which it was trained (Duda et al., 2001; Narins 
and Clark, 2016). Another important point is that the clas-
sification experiment must include the measurement of both 

target detections and false alarms. Amazingly, I have seen 
countless costly projects in which only the detections were 
measured, with no regard to false alarms. This ensures that 
classification performance cannot be measured properly, as 
described next.

Erroneous Methods of Measuring System Performance
The most egregious and most common error is that of using 
the quantity probability of detection PD as the performance 
index for a classifier. Bayesian hypothesis testing theory 
tells us that both PD and probability of false alarm PFA (or 
their complements) are required to specify detection perfor-
mance (Van Trees, 1968). The user must make the trade-off 
between the two by choosing a decision threshold based on a 
receiver operating characteristic (ROC) curve. Nonetheless, 
I have witnessed countless people who computed only the 
PD and reported the results as if they were meaningful (e.g., 
in PhD theses, project reports, and program reviews). Smart 
people behaving foolishly.

If one wants a single scalar classification performance index, 
one should use the probability of correct classification or PCC 
or its complement, the probability of error PError= 1–PCC . Un-
der some simplifying assumptions, PCC = ½ [PD + (1 – PFA)]. In 
addition, one should always compute a statistical confidence 
interval about PCC  (Duda et al., 2001; Narins and Clark, 2016).

Proposals
Proposals are all about trust. When writing proposals, you 
should do your best to understand the point of view of the 
sponsor/manager. This means knowing what is important 
to the organization and its sponsors, including its mission and 
priorities. The sponsor must trust that you have in mind her/
his best interests and trust that you will deliver. I have witnessed 
countless people living diminished careers because they never 
learned to give enough thought to the priorities of their spon-
sors rather than their own. Smart people behaving foolishly.

Clark’s Law of Knowing What Is Important

The most important ability one can have is the ability to 
know what is important (Clark, 2016).

Clark’s Law of Management Decisions

Most management decisions involve politics, so they are 
often based more on fear and ego than principle. The big-

gest fear is looking bad (Clark, 2016).

Smart People Behaving Foolishly

Figure 3. Inverse problems are very difficult because they are often 
ill posed and/or ill conditioned. Imagine inserting hamburger into a 
meat grinder, turning the grinder backward, and expecting to obtain 
a cow at the output.



Fall 2016  |   Acoustics Today  |  29

Managers/sponsors have limited budgets, many mouths to 
feed, and political forces acting on them from many direc-
tions. They live in a world that loves to assign blame for any 
kind of shortcoming. They do not want to look bad by fund-
ing a weak project or a weak principal investigator, getting 
“crosswise” with their bosses’ priorities, or making a foolish 
move. Try to understand these pressures on your sponsor 
and do everything you can to earn the sponsor’s trust.

Clark’s Law of Project Funding

Project funding has little or nothing to do with how much 
is actually required to do the work (Clark, 2014, 2016).

The funding amount you receive is usually much less than 
that which you proposed. In this case, it is critically impor-
tant to negotiate a new, more attainable set of project de-
liverables. Otherwise, you will look bad. Remember faster, 
better, cheaper.

Clark’s Proposal Strategy

Make your proposal so compelling that management will 
“look bad” if they do not support it (Clark, 2016).

Consider the following characteristics of a proposal and 
the associated probabilities of receiving funding. (1) Your 
ideas are exceptionally innovative. This is necessary but usu-
ally not sufficient to get funding. (2) The first characteristic 
is true and your technical ideas are very important to the 
mission of the organization. This is necessary but often not 
sufficient to get funding. (3) Both the first and second char-
acteristics are true, and the proposal is so compelling that 
management will look bad if they do not support it. This is 
often sufficient to get management support, but there are no 
guarantees.

General Project and Career Issues
I have reviewed many journal papers, participated in many 
program reviews, and attended many sales pitches that con-
veniently avoided the downsides and trade-offs involved 
with technical ideas/products. This is wasteful and wrong. 
Everybody knows there is no free lunch, and trade-offs are 
ubiquitous. Your credibility will only grow if you acknowl-
edge this and level with everyone. Tell the entire story.

Clark's Principle of Intellectual Honesty

Tell the full truth about your ideas - the advantages, 
disadvantages, and trade-offs because a half-truth 

masquerading as the whole truth is an untruth 
(Clark, 2016).

Clark’s Law of Integrity

Once you’ve lost your integrity, you’ve lost everything 
(Clark, 2014).

Clark’s Law of Mental Health

Mental health is having options (Clark, 2016).

A good way to mitigate career stress is to spend a serious 
amount of effort making sure your life is balanced and you 
always have the option to get another job. This includes pro-
tecting your health and the health of your family, working 
with integrity, staying on the cutting edge of technology, not 
accepting dead-end jobs, publishing in the literature, go-
ing to conferences, and nurturing a network of colleagues 
around the world who know and trust you.

Conclusions
Don’t let fear drive your agenda. Rather, focus on your prin-
ciples and your health. Have the courage to live by your con-
victions. If you make a mistake, apologize sincerely and do 
your best to avoid making the same mistake again. Always 
level with your sponsors, management, and journal paper 
readers about the limitations and trade-offs associated with 
your research. Tell them even if they don’t want to hear it. 
Tell them even if it might cost you funding. It will cement 
your credibility because the full truth is so rare. You’ll be 
able to sleep at night. This is a matter of integrity and ethics. 
Once you’ve lost your integrity, you’ve lost everything. In the 
short run, you might take a beating, but in the long run, it 
will be good for your career and life because the laws of na-
ture eventually punish hubris.

If at all possible, avoid data chasing. Sometimes manage-
ment may demand compliance with unreasonable technical 
ideas or promises. Tell them that you are being asked to do 
data chasing with little or no chance of a good result. I wish 
you the best of fortune in your future endeavors. If you like, 
please send me your horror stories!
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