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There are many reasons why children and cocktail parties do not mix. One less 
obvious reason is that children struggle to hear and understand speech when mul-
tiple people are talking at the same time. Cherry (1953) was not likely thinking 
about children when he coined the “cocktail party problem” over 60 years ago, 
referring to the speech perception difficulties individuals often face in social en-
vironments with multiple sources of competing sound. Subsequent research has 
largely focused on trying to understand how adults recognize what one person is 
saying when other people are talking at the same time (reviewed by Bronkhorst, 
2000; McDermott, 2009). However, modern classrooms pose many of the same 
challenges as a cocktail party, with multiple simultaneous talkers and dynamic 
listening conditions (Brill et al., 2018). In contrast to the cocktail party, however, 
failure to recognize speech in a classroom can have important consequences for 
a child’s educational achievement and social development. These concerns have 
prompted several laboratories, including ours, to study development of the ability 
to recognize speech in multisource backgrounds. This article summarizes findings 
from the smaller number of studies that have examined the cocktail party prob-
lem in children, providing evidence that children are at an even greater disadvan-
tage than adults in complex acoustic environments that contain multiple sources 
of competing sounds. 

For much of the school day, children are tasked with listening to their teacher in 
the context of sounds produced by a range of different sound sources in the class-
room. Under these conditions, we would call the teacher’s voice the target and the 
background sounds would be the maskers. All sounds in the environment, in-
cluding the target and the maskers, combine in the air before reaching the child’s 
ears. This combination of acoustic waveforms is often referred to as an auditory 
scene. An example of an auditory scene is illustrated in Figure 1, where sounds in-
clude the relatively steady noise produced by a projector as well as more dynamic 
sounds, such as speech produced by classmates who are talking at the same time 
as their teacher. To hear and understand the teacher, the spectral and temporal 
characteristics of this mixture of incoming sounds must be accurately represented 
by the outer ear, middle ear, cochlea, and auditory nerve. This processing is often 
referred to as peripheral encoding. Auditory perception is critically dependent on 
the peripheral encoding of sound and the fidelity with which this information is 
transmitted to the brain. Processing within the central auditory system is then 
needed to identify and group the acoustic waveforms that were generated by the 
teacher from those that were generated by the other sources (sound source segre-
gation) and then allocate attention to the auditory “object” corresponding to the 
teacher’s voice while discounting competing sounds (selective auditory attention). 
Auditory scene analysis also relies on cognitive processes, such as memory, as 
well as listening experience and linguistic knowledge. Collectively, these processes 
are often referred to as auditory scene analysis (e.g., Bregman, 1990; Darwin and 
Hukin, 1999).
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Immaturity at any stage of processing can impact the extent 
to which students in the classroom hear and understand the 
target voice. For example, spectral resolution refers to the 
ability to resolve the individual frequency components of a 
complex sound. Degraded spectral resolution is one conse-
quence of congenital hearing loss, specifically sensorineural 
hearing loss caused by damage to the outer hair cells in the 
cochlea. This degraded peripheral encoding may reduce au-
dibility of the target speech, making it impossible for adults 
or children with sensorineural hearing loss to perform audi-
tory scene analysis. Perhaps less obvious, immature central 
auditory processing could result in the same functional out-
come in a child with normal hearing. For example, the per-
ceptual consequence of a failure to selectively attend to the 
speech stream produced by the teacher, while ignoring class-
mates’ speech, is reduced speech understanding, even when 
the peripheral encoding of the teacher’s speech provides all 
the cues required for recognition.

Maturation of Peripheral Encoding
Accurate peripheral encoding of speech is clearly a prerequi-
site for speech recognition. However, sensory representation 
of the frequency, temporal, and intensity properties of sound 
does not appear to limit auditory scene analysis during the 
school-age years. The cochlea begins to function in utero, be-
fore the onset of visual functioning (Gottlieb, 1991). Physio-
logical responses to sound provide evidence that the cochlea 

is mature by term birth, if not earlier (e.g., Abdala, 2001). 
Neural transmission through the auditory brainstem appears 
to be slowed during early infancy, but peripheral encoding 
of the basic properties of sound approaches the resolution 
observed for adults by about six months of age (reviewed by 
Eggermont and Moore, 2012; Vick, 2018). 

A competing noise masker can interfere with the peripheral 
encoding of target speech if the neural excitation produced 
by the masker overlaps with the neural representation of the 
target speech. This type of masking can be more severe in 
children and adults with sensorineural hearing loss than in 
those with normal hearing. Sensorineural hearing loss is of-
ten due to the loss of outer hair cells in the cochlea (reviewed 
by Moore, 2007). As mentioned above, outer hair cell loss 
degrades the peripheral encoding of the frequency, inten-
sity, and temporal features of speech, which, in turn, impacts 
masked speech recognition. Indeed, multiple researchers 
have demonstrated an association between estimates of pe-
ripheral encoding and performance on speech-in-noise tasks 
for adults with sensorineural hearing loss (e.g., Dubno et al., 
1984; Frisina and Frisina, 1997). 

Additional evidence that competing noise interferes with 
the perceptual encoding of speech comes from the results of 
studies evaluating consonant identification in noise by adults 
(e.g., Miller and Nicely, 1955; Phatak et al., 2008). Consonant 
identification is compromised in a systematic way across 
individuals with normal hearing when competing noise is 
present, presumably because patterns of excitation produced 
by the target consonants and masking noise overlap on the 
basilar membrane (Miller, 1947). In the classroom example 
shown in Figure 1, overlap in excitation patterns between 
speech produced by the teacher and noise produced by the 
projector can result in an impoverished neural representa-
tion of the teacher’s spoken message, although this depends 
on the relative levels of the two sources and distance to the 
listener. The term energetic masking is often used to describe 
the perceptual consequences of this phenomenon (reviewed 
by Brungart, 2005). 

Despite mature peripheral encoding, school-age chil-
dren have more difficulty understanding speech in noise 
compared with adults. For example, 5- to 7-year-old chil-
dren require a 3-6 dB more favorable signal-to-noise ratio 
(SNR) than adults to achieve comparable speech detection, 
word identification, or sentence recognition performance 
in a speech-shaped noise masker (e.g., Corbin et al., 2016). 
Speech-in-noise recognition gradually improves until 9-10 
years of age, after which mature performance is generally ob-

Hearing in the Classroom

Figure 1. This cartoon illustrates the cocktail party problem in the 
classroom. In this example, acoustic waveforms are produced by 
three sources: (1) noise is produced by a computer projector in the 
classroom; (2) speech is produced by the teacher; and (3) speech is 
produced by two classmates who are also talking. The fundamental 
problem is that the acoustic waveforms produced by all three sound 
sources combine in the air before arriving at the students’ ears. To fol-
low the teacher’s voice, students must “hear out” and attend to their 
teacher while disregarding the sounds produced by all other sources.
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served (e.g., Wightman and Kistler, 2005; Nishi et al., 2010). 
The pronounced difficulties experienced by younger school-
age children are somewhat perplexing in light of data indi-
cating that the peripheral encoding of sound matures early 
in life. It has been posited that these age effects reflect an im-
mature ability to recognize degraded speech (e.g., Eisenberg 
et al., 2000; Buss et al., 2017). It has also been suggested that 
children’s immature working memory skills also play a role 
in their speech-in-noise difficulties (McCreery et al., 2017).

Maturation of Auditory Scene Analysis
Children are at a disadvantage relative to adults when lis-
tening to speech in competing noise, but the child/adult 
difference is considerably larger when the maskers are also 
composed of speech. Hall et al. (2002) compared word rec-
ognition for children (5-10 years) and adults tested in each 
of two maskers: noise filtered to have the same power spec-
trum as speech (speech-shaped noise; see Multimedia File 1 
at acousticstoday.org/leibold-media) and competing speech 
composed of two people talking at the same time (see  Multi-
media File 2 at acousticstoday.org/leibold-media). On aver-
age, children required a 3 dB more favorable SNR relative 
to adults to achieve a comparable performance in the noise 
masker. This disadvantage increased to 8 dB in the two-talker 
masker. In addition to the relatively large child/adult differ-
ences observed in the two-talker masker relative to the noise 
masker, the ability to recognize masked speech develops at 
different rates for these two types of maskers (e.g., Corbin et 
al. 2016). Although adult-like speech recognition in compet-
ing noise emerges by 9-10 years of age (e.g., Wightman and 
Kistler, 2005; Nishi et al., 2010), speech recognition perfor-
mance in a two-talker speech masker is not adult-like until 
13-14 years of age (Corbin et al., 2016). This prolonged time 
course of development appears to be at least partly due to 
immature sound segregation and selective attention skills. 
Recognition of speech produced by the teacher is likely to 
be limited more by speech produced by other children in the 
classroom than by noise produced by the projector (see Fig-
ure 1). The term informational masking is often used to refer 
to this phenomenon (e.g., Brungart, 2005).

An important goal for researchers who study auditory de-
velopment is to characterize the factors that both facilitate 
and limit children’s ability to perform auditory scene analysis 
(e.g., Newman et al., 2015; Calandruccio et al., 2016). For lis-
teners of all ages, the perceptual similarity between target and 
masker speech affects performance in that greater masking is 
associated with greater perceptual similarity. A common ap-
proach to understanding the development of auditory scene 

analysis is to measure the extent to which children rely on 
acoustic voice differences between talkers to segregate target 
from masker speech (e.g., Flaherty et al., 2018; Leibold et al., 
2018). For example, striking effects have been found between 
conditions in which the target and masker speech are pro-
duced by talkers that differ in sex (e.g., a female target talker 
and a two-male-talker masker) and conditions in which tar-
get and masker speech are produced by talkers of the same 
sex (e.g., a male target talker and a two-male-talker masker). 
Dramatic improvements in speech intelligibility, as much as 
20 percentage points, have been reported in the literature 
for sex-mismatched relative to sex-matched conditions (e.g., 
Helfer and Freyman, 2008). 

School-age (Wightman and Kistler, 2005; Leibold et al., 2018) 
and 30-month-old (Newman and Morini, 2017) children 
also show a robust benefit of a target/masker sex mismatch, 
but infants younger than 16 months of age do not (Newman 
and Morini, 2017; Leibold et al., 2018). Leibold et al. (2018), 
for example, measured speech detection in a two-talker 
masker in 7- to 13-month-old infants and in adults. Adults 
performed better when the target word and masker speech 
were mismatched in sex than when they were matched. In 
sharp contrast, infants performed similarly in sex-matched 
and sex-mismatched conditions. The overall pattern of re-
sults observed across studies suggest that the ability to take 
advantage of acoustic voice differences between male and 
female talkers requires experience with different talkers be-
fore the ability emerges sometime between infancy and the 
preschool years. 

Although children as young as 30 months of age benefit from 
a target/masker sex mismatch, the ability to use more subtle 
and/or less redundant acoustic voice differences may take 
longer to develop. Flaherty et al. (2018) tested this hypoth-
esis by examining whether children (5-15 years) and adults 
benefited from a difference in voice pitch (i.e., fundamen-
tal frequency; F0) between target words and a two-talker 
speech masker, holding other voice characteristics constant. 
As previously observed for adults (e.g., Darwin et al, 2003), 
adults and children older than 13 years of age performed 
substantially better when the target and masker speech dif-
fered in F0 than when the F0 of the target and masker speech 
was matched. This improvement was observed even for the 
smallest target/masker F0 difference of three semitones. In 
sharp contrast, younger children (<7 years) did not benefit 
from even the most extreme F0 difference of nine semitones. 
Moreover, although 8-12 year olds benefitted from the largest 
F0 difference, they generally failed to take advantage of more 
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subtle F0 differences between target and masker speech. 
These data highlight the importance of auditory experience 
and maturational effects in learning how to segregate target 
from masker speech. 

In addition to relying on acoustic voice differences between 
talkers when listening in complex auditory environments, 
adults with normal hearing take advantage of the differ-
ences in signals arriving at the two ears. These differences 
provide critical information regarding the location of sound 
sources in space, which, in turn, facilitates segregation of 
target and masker speech (e.g., Bregman, 1990; Freyman et 
al., 2001). The binaural benefit associated with separating 
the target and masker on the horizontal plane is often called 
spatial release from masking (SRM). In the laboratory, SRM 
is typically estimated by computing the difference in speech 
recognition performance between two conditions: the co-
located condition, in which the target and masker stimuli are 
presented from the same location in space, and the spatial 
separation condition, in which the target and masker stimuli 
are perceived as originating from different locations on the 
horizontal plane. For adults with normal hearing, SRM is 
substantially larger for speech recognition in a masker com-
posed of one or two streams of speech than in a noise masker 
(reviewed by Bronkhorst, 2000).

Several studies have evaluated SRM in young children and 
demonstrate a robust benefit of spatially separating the tar-
get and masker speech (e.g., Litovsky, 2005; Yuen and Yuan, 
2014). Results are mixed, however, regarding the time course 
of development for SRM. Although Litovsky (2005) observed 
adult-like SRM in 3-year-old children, other studies have re-
ported a smaller SRM for children compared with adults, a 
child/adult difference that remains until adolescence (e.g., 
Yuen and Yuan, 2014; Corbin et al., 2017). In a recent study, 
Corbin et al. (2017) assessed sentence recognition for chil-
dren (8-10 years) and adults (18-30 years) tested in a noise 
masker and in a two-talker masker. Target sentences were 
always presented from a speaker directly in front of the lis-
tener, and the masker was either presented from the front 
(co-located) or from 90° to the side (separated). Although a 
comparable SRM was observed between children and adults 
in the noise masker, the SRM was smaller for children than 
adults in the two-talker masker. In other words, children 
benefitted from binaural difference cues less than adults in 
the speech masker. This is important from a functional per-
spective because it means that not only are children more 
detrimentally affected by background speech, but they are 

also less able to use spatial cues to overcome the masking 
associated with speech.

In addition to sound source segregation, auditory scene analy-
sis depends on the ability to allocate and focus attention on 
the target. Findings from studies using behavioral shadowing 
procedures provide indirect evidence that selective auditory 
attention remains immature well into the school-age years 
(e.g., Doyle, 1973; Wightman and Kistler, 2005). In a typical 
shadowing task, listeners are asked to repeat speech presented 
to one ear while ignoring speech or other sounds presented to 
the opposite ear. Children perform more poorly than adults 
on these tasks, with age-related improvements observed into 
the adolescent years (e.g., Doyle, 1973; Wightman and Kistler, 
2005). Moreover, children’s incorrect responses tend to be in-
trusions from speech presented to the ear they are supposed 
to disregard. For example, Wightman and Kistler (2005) asked 
children (4-16 years) and adults (20-30 years) to attend to tar-
get speech presented to the right ear while disregarding mask-
er speech presented to both the right and left ears. Most of the 
incorrect responses made by adults and children older than 13 
years of age were due confusions with the masker speech that 
was presented to the same ear as the target speech. In contrast, 
incorrect responses made by the youngest children (4-5 years) 
tested were often the result of confusions with the masker 
speech presented to the opposite ear as the target speech. This 
result is interpreted as showing that young children do not re-
liably focus their attention on the target even in the absence of 
energetic masking.

Although behavioral data suggest that selective auditory at-
tention remains immature throughout most of childhood, 
a key limitation of existing behavioral paradigms is that we 
cannot be certain to what a child is or is not attending. Poor 
performance on a shadowing task might reflect a failure of 
selective attention to the target but is also consistent with an 
inability to segregate the two streams of speech (reviewed by 
Sussman, 2017). This issue is further complicated by the bi-
directional relationship between segregation and attention; 
attention influences the formation of auditory streams (e.g., 
Shamma et al., 2011). Researchers have begun to disentangle 
the independent effects of selective auditory attention by 
measuring auditory event-related brain potentials (ERPs) 
to both attended and unattended sounds (e.g., Sussman and 
Steinschneider, 2009; Karns et al., 2015). The pattern of re-
sults observed across studies indicates that adult-like ERPs 
associated with selective auditory attention do not emerge 
until sometime after 10 years of age, consistent with the time 
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course of maturation observed in behavioral speech-recog-
nition data and improvements in executive control (reviewed 
by Crone, 2009).

Role of Linguistic Experience  
and Knowledge
It has been suggested that the ability to use the information 
provided by the peripheral auditory system optimally re-
quires years of experience with sound, particularly exposure 
to spoken language (e.g., Tomblin and Moeller, 2015). In a 
recent study, Lang et al. (2017) tested a group of 5- to 6-year-
old children and found a strong relationship between recep-
tive vocabulary and speech recognition when the masker was 
two-talker speech masker. As shown in Figure 2, children 
with larger vocabularies were more adept at recognizing sen-
tences presented in a background of two competing talkers 
than children with more limited vocabularies. Results from 
previous studies investigating the association between vo-
cabulary and speech recognition in a steady noise masker 
have been somewhat mixed (e.g., Nittrouer et al., 2013; Mc-
Creery et al., 2017). The strong correlation observed by Lang 
et al. (2016) between vocabulary and speech recognition in 
a two-talker masker may reflect the greater perceptual and 
linguistic demands required to segregate and attend to target 
speech in a speech masker or to the spectrotemporally sparse 
cues available in dynamic speech maskers.

A second line of evidence that immature language abili-
ties contribute to children’s increased difficulty recognizing 
speech when a few people are talking at the same time comes 
from studies that have compared children’s and adults’ ability 
to recognize speech based on impoverished spectral and/or 
temporal information (e.g., Eisenberg et al., 2000; Buss et al., 
2017). For example, adults are able to recognize band-pass-
filtered speech based on a narrower bandwidth than children 
(e.g., Eisenberg et al., 2000; Mlot et al. 2010). One interpreta-
tion for this age effect is that children require more informa-
tion than adults in order to recognize speech because they 
have less linguistic experience. 

This hypothesis was recently tested by assessing speech recog-
nition in a two-talker masker across a wide age range of chil-
dren (5-16 years) and adults using speech that was digitally 
processed using a technique designed to isolate the auditory 
stream associated with the target speech (Buss et al., 2017). 
Children and adults showed better performance after the sig-
nal processing was applied, indicating that sound source seg-

regation negatively impacts children’s speech recognition in a 
speech masker. The child/adult difference in performance per-
sisted, however, providing evidence of developmental effects in 
the ability to reconstruct speech based on sparse speech cues. 

Implications 
The negative effects of environmental noise on children’s 
speech understanding in the classroom are well documented, 
leading to the development of a classroom acoustics standard 
by the Acoustical Society of America (ASA) that was first ap-
proved by the American National Standards Institute (ANSI) 
in 2002 (ANSI S12.60). Although this and subsequent stan-
dards recognize the negative effects of environmental noise 
in the classroom on children’s speech understanding, they 
focus exclusively on noise sources measured in unoccupied 
classrooms (e.g., heating and ventilation systems, street traf-
fic). The additional sounds typically present in an occupied 
classroom, such as speech, are not accounted for. As argued 
by Brill et al. (2018) in an article in Acoustics Today, meeting 
the acoustics standards specified for unoccupied classrooms 
might not be adequate for ensuring children’s speech under-
standing in occupied classrooms, in which multiple people 
are often talking at the same time. This is problematic be-
cause, as anyone who has spent time in a classroom can at-
test, children spend most of their days listening and learning 
with competing speech in the background (e.g., Ambrose et 
al., 2014; Brill et al., 2018). 
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Figure 2. Receptive vocabulary scores and thresholds for sentence 
recognition in a two-talker masker are shown for 30 young children 
(5-6 years) tested by Lang et al. (2017). There was a strong associa-
tion between performance on these two measures (r = −0.75; P < 
0.001), indicating that children with larger vocabularies showed bet-
ter speech recognition performance in the presence of two competing 
talkers than children with smaller vocabularies. SNR, signal-to-noise 
ratio; PPVT, Peabody Picture Vocabulary Test. 
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Conclusion
Emerging results from investigation into how children listen 
and learn in multisource environments provide strong evi-
dence that children do not belong at cocktail parties. Despite 
the more obvious reasons, children lack the extensive lin-
guistic knowledge and the perceptual and cognitive abilities 
that help adults reconstruct the auditory scene. 
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