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One of the most fundamental
questions we can ask about a
wildlife population is “How

many are there?” Estimates of popula-
tion size, or a related quantity popula-
tion density (i.e., animals per unit
area), are crucial for effective manage-
ment, whether the management goal is
conservation of a threatened or endan-
gered species, control of a pest species,
or optimal harvest of a species used for
food. Population estimates are used to
prioritize species of conservation con-
cern, to monitor the success of man-
agement programs, and to set limits on
harvest or incidental bycatch. Although
“how many?” is a simple question to
ask, it is often a hard one to answer, given that many popu-
lations are patchily distributed over very large areas and
their lifestyle can make them quite cryptic to human
observers. In this article, we introduce an emerging field
with great potential—the estimation of wild animal popula-
tion size and density using passive acoustics.

The potential for passive acoustic density estimation
Traditional methods for estimating animal numbers

most often rely on visual surveys, where animals need to be
seen to be counted. Probably the most common is a visually-
based distance sampling survey (Buckland et al., 2001),
where observers visit a set of randomly placed transect lines
or points, recording the distance to all detected animals of
the target species. The distances are important because they
allow us to estimate the probability of detecting animals, and
hence account for the proportion missed (see later).
Alternatively, if the animals have uniquely identifiable mark-
ings, then an alternative method can be used, called mark-
recapture (or capture-recapture; Williams et al., 2002). Here,
observers visit the study area on a sequence of occasions,
recording each animal detected and, if it was marked, which
animal it was. The patterns of missing detections of marked
animals can be used to estimate the probability of detection
and hence infer how many animals have been missed com-

pletely. If animals do not bear natural
markings, they can in some studies be
caught and given marks (such as tags).

These traditional visual methods
have been used in thousands of studies
covering every major taxonomic group.1

However, they do not work well in all
circumstances. For one thing, some ani-
mals are inherently hard to see, for
example because they live underwater
or in thick forest, or because they are
small, well camouflaged, or only active
at night. Many do not have readily dis-
tinguishable markings and are hard to
trap. In addition, traditional surveys can
be very expensive, requiring trained
observers and expensive survey vehicles

to operate for extended periods in often far-flung and inhos-
pitable environments. Think what it would cost to undertake
a visual survey of marine mammals in the Southern Ocean in
winter. For these reasons, there has been a keen interest in
developing alternatives.

Passive acoustic monitoring offers one such alternative.
Many species of animal produce distinctive sounds, either as
part of a social display (e.g., to mark a territory or attract
mates) or as an aid in navigation and foraging (e.g., echolo-
cation). In many cases, these acoustic signals are detectable at
greater distances than visual cues. Indeed, in environments
where light does not pass easily, and hence visual methods
are ineffective, animals are more likely to use sound as a
means of communication, making them ideally suited for
acoustic methods. Acoustic methods are also potentially less
affected by weather conditions, and can operate under vary-
ing light levels, particularly at night. Another advantage is
that the science of automated detection and classification of
sounds is relatively well developed, as readers of this maga-
zine will know, opening the possibility of automated process-
ing of large volumes of remotely gathered data. By contrast,
visual surveys are still almost universally performed by
human observers, and even if digital imaging is used, classi-
fication is almost exclusively performed by humans (e.g.,
Buckland et al., 2012).

“Although “how many?” is a

simple question to ask, it’s

often a hard one to answer

…we introduce an emerging

field with great potential: The

estimation of wild animal

population size and density

using passive acoustics.”
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The potential for passive acoustic data to be used to
make inferences about animal populations has been recog-
nized for decades (see, e.g., review by Mellinger et al. 2007).
However, these inferences have largely been limited to con-
firming presence, or quantifying spatial and temporal pat-
terns in relative indices such as vocalizations detected per
day. Although useful in many contexts, a fundamental limi-
tation of such measures is that they do not account for spatial
and temporal variation in the acoustic detectability of ani-
mals and hence may not reflect true patterns of density or
abundance. We aim, so far as possible, to account for such
issues with the methods discussed in this article.

Much of our expertise in this area comes from a three-
year research project, DECAF,2 which focused on developing
methods for estimating cetacean (whale and dolphin) density
from fixed sensors. The examples presented here retain that
bias. However the methods can readily be applied to terrestri-
al systems, and using mobile sensors, and we return to this at
the end of the article. DECAF was a highly collaborative
multi-agency, multi-disciplinary project bringing together an
international team of statisticians, acousticians, engineers and
biologists. We gratefully acknowledge the other team mem-
bers: David Moretti, Ronald Morrissey, Nancy DiMarzio and
Jessica Ward from the Navy Undersea Warfare Centre in
Newport, Rhode Island; David Mellinger and Elizabeth Küsel
from Oregon State University, Newport, Oregon; Stephen
Martin from the Space and Naval Warfare Systems Centre
Pacific, San Diego, California; David Borchers and Catriona
Harris from the University of St. Andrews, Scotland; and
Peter Tyack of Woods Hole Oceanographic Institution,
Woods Hole, Massachusetts (now also at the University of St.
Andrews).

Density estimation 101
Imagine the following general scenario. We have made

acoustic recordings at a set of random locations throughout
the region within which we were interested in estimating ani-
mal density. Together, these recordings survey an area a (the
union of a set of circles around each recorder with radius
large enough that no call from outside these circles can be
detected). We have processed the recordings using detection
and classification algorithms to produce a count, n, for exam-
ple the number of a particular type of call.3 To convert the
count into a density, D, we use an equation of the form 

(1)                      

where m represents a set of multipliers that convert count-
per-unit-area (i.e., n/a) to animal density, and “hats” over
quantities indicate that they are estimates. 

In general, the multipliers that make up m do two jobs.
First they account for inaccuracies in the detection process,
i.e., false positive and false negative detections. The false pos-
itive rate is usually easiest to estimate, by hand-validating a
sample of detections (assuming that we view a human analyst
as the gold standard). False negative rate is often expressed as
its complement, the detection probability; it is generally
harder to determine, and will be the focus of much of this

article. The second job of multipliers is to convert the object
counted (e.g., a call) into the number of animals it represents.
The exact nature of these second multipliers depends on the
type of object counted. In some cases acoustic processing can
yield the number of animals present (e.g., if animals have
unique vocalizations or can be otherwise isolated)—hence
the count is of animals and no multiplier of this type is need-
ed. In other cases, it may be possible to count groups of ani-
mals, in which case the required multiplier is mean group
size. Most commonly, however, the count is of sounds, such
as calls or clicks, and the required multiplier is the sound pro-
duction rate. This latter type of surveying is called “cue
counting” in the statistical literature (the sound is an acoustic
cue), and the multiplier is called the “cue rate.”

Just as important as the estimate itself is a reliable char-
acterization of uncertainty in the estimate. Your interpreta-
tion of a density estimate of 1 whale per 1,000 km2 would be
quite different if we told you that the 95% confidence inter-
val was 0.8–1.2 versus 0.2–5.1 whales per 1,000 km2.
Quanitifying uncertainty is also fundamental in testing for
trends over time, differences between areas, etc. One com-
mon way to report uncertainty is as coefficient of variation,
CV, which is the standard error of an estimate divided by the
estimate, and usually reported in percent. From here, it’s
straightforward to calculate quantities like confidence inter-
vals (see, e.g., Buckland et al. 2001, p.77). A CV of 10% on a
density estimate is very good, corresponding to the kind of
95% confidence interval we gave first, above. A CV of 20% is
reasonable, but by the time you get to CVs of 100% the esti-
mate is nearly useless (as in the second confidence interval
we gave above). The CV on a density estimate can be calcu-
lated easily given the CV on each random component mak-
ing up the estimate (the n and each multiplier in m, assuming
each is statistically independent).4 It is our experience, how-
ever, that not enough attention is paid to this—all too often
estimates are given without corresponding CVs or confidence
intervals, or there is no discussion of how reliable the esti-
mates are.

An example—Cue counting beaked whales in the
Bahamas

To take a concrete example, Marques et al. (2009) estimat-
ed the density of Blainville’s beaked whales (Mesoplodon den-
sirostris) at Tongue of the Ocean, Bahamas over a 6-day period
in spring 2005. This area contains a US Navy testing range, the
Atlantic Undersea Testing and Evaluation Center (AUTEC)
which is instrumented with a wide baseline array of 82 bot-
tom-mounted hydrophones (see Fig. 1) cabled to shore, mak-
ing it an ideal laboratory for bioacoustic studies. Blainville’s
beaked whales occur there, and are of particular concern to the
Navy because there have been documented strandings of this
and related species coincident with Navy exercises (D’Amico et
al., 2009). In common with other beaked whale species, they
undertake long (~45 minute), deep (600-1200 m) foraging
dives, during which they produce high frequency echolocation
clicks to locate prey. Running a simple detection and classifi-
cation algorithm on the sound recordings over the survey peri-
od logged 𝑛 = 2,940,521 echolocation clicks. Marques et al.
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assumed that no clicks at greater than 8 km horizontal range
could be detected, so the area surveyed was a = 82× 𝜋 × 82 =
16,487 km2. The problem was to build on these numbers to
derive a density estimate.

Marques et al. (2009) used a cue count approach, treat-
ing the echolocation click as the cue. In addition to the above
information, four multipliers were required. Two account for
the detection process—false positive rate, c, and average
detection probability, p. Two convert density of clicks to den-
sity of animals—the click production rate, r, and the time
spent monitoring T. Hence the formula used was 

(2)                              

This makes intuitive sense if we think of 𝑛 × (1 − ĉ) as an esti-
mate of the true number of Blainville’s clicks detected,
accounting for false positives. Dividing this by �̂� gives an esti-
mate of the true number of Blainville’s clicks produced,
accounting for those missed. The quantity �̂�𝑇 is an estimate
of the average number of clicks produced per whale over the
time T, so dividing the estimated total number of clicks pro-
duced 𝑛 × (1 − ĉ) / p̂ by the estimated number produced per
whale �̂�T gives an estimate of the number of whales. Dividing
this by the area a gives an estimate of whale density, and
hence the formula shown above.

The problem now becomes one of obtaining reliable val-
ues for the multipliers. Time spent monitoring was known
(T = 4,961 minutes, accounting for some data outages), and
so does not have a hat. Estimating the other multipliers
required some additional data.

For false positives, a systematic random sample of 30 10-
minute recordings was hand-screened for false detections,
yielding an estimated false positive rate of ĉ = 0.451. This is
rather high, due to the simple nature of the detection and
classification system used, where dolphin clicks were often
confused with beaked whale clicks. The fact that 30 random
recordings were used enabled calculation of uncertainty in
this estimate—the CV was 1.99%. In other words, although

the average false positive rate was high, its’ value was esti-
mated quite precisely and so did not contribute much to the
overall uncertainty in the density estimate. Because it was
calculated from a random sample taken from the 6-day data
set used for density estimation it is also unbiased—i.e., it is
correct, on average, for the 6-day period in which we are
interested. If we wanted to estimate density for some other
time period, the safest thing would be to take a new system-
atic random sample of times from that period and re-calcu-
late the false positive rate. False positive rates vary according
to the density of interfering sounds—in our case dolphins
were the main problem, and the density of dolphins could be
completely different in another time period. This illustrates a
general principle with multipliers—it is best to estimate them
using data from the time and place from which you want to
estimate density. For false positives this is relatively tractable
(so long as we have some raw sound files or other pertinent
information from the survey data, and trust human analysts
as the gold standard). For other multipliers it may be less so. 

A good example of this is the data used to obtain cue rate
and detection probability in this study. These data come from
a sample of Blainville’s beaked whales fitted with digital
recording tags, “DTAGs,” in fall 2006 and summer 2007 as
part of another study within the same area. DTAGs record
sound at high sampling rate, as well as kinematic variables
that enable the animal’s track to be reconstructed.5 The
sound recordings were processed, and clicks produced by the
tagged whales were counted, yielding an estimated cue rate of
�̂� = 0.407 clicks/second. Each of the 21 dives was considered
to be an independent sample, yielding a CV 9.8%. The 21
dives actually came from 5 whales, so there is a potential
issue there with non-independence of dives within whales
(biologists call this issue “pseudoreplication”). But a more
important issue is that we assumed the cue rate of these
whales, tagged in 2006 and 2007, is representative of cue rates
of an average whale during the 6-day period we wish to esti-
mate density for in 2005, when there were no tagged animals.
This assumption may be reasonable here, since beaked

Fig. 1. Approximate location of the bottom-mounted hydrophones within the Atlantic Undersea Testing and Evaluation Center (AUTEC), Tongue of the Ocean, Bahamas.
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whales show quite metronomic diving behavior (see discus-
sion in Marques et al., 2009 paper). However, for other
species and other contexts it may not be, given that vocaliza-
tion rates can vary in marine mammals as a function of time
of day, year, group size, season, bottom depth, location, etc. If
the relationship between cue rate and these factors is known,
it may be possible to use a modeling approach to predict
mean cue rate during the time of the survey. For example, if
cue rate depends on local group size then one would need an
estimate of the relationship between cue rate and group size
(from a statistical model), and also the distribution of group
sizes during the survey period of interest. One important
limitation arises when cue rate depends on animal density
itself—in this case the only option is to measure it within the
study area during the time period of interest. 

For estimating the detection probability, Marques et al.
(2009) were able to match up clicks produced by the tagged
whales with those received on the surrounding bottom-
mounted hydrophones. The simplest analysis would have
been to take all hydrophones within an 8 km radius of the
whale and calculate what proportion of the emitted clicks was
received. However, because there was a relatively small num-
ber of dives (only 15 with tracks), and they did not wish to
assume that animals were randomly distributed with respect
to hydrophones, Marques et al. took a more complex
approach. This involved building a regression model of the
probability of detecting a click on the bottom-mounted
hydrophones as a function of direct-path distance and hori-
zontal and vertical angle of the whale with respect to the
hydrophones. The angles were important because the echolo-
cation clicks of beaked whales are highly directional. Given
the fitted regression model (see Fig. 2), a Monte-Carlo pro-
cedure was used to integrate out distance and angle, and yield
an estimated average detection probability of �̂� = 0.032 with
CV of 15.9% (again using the dive as the sample unit).

As with the cue rate multiplier, there is the issue that
detection probability was not estimated at the same time and
place as the density dataset. There is a particular potential for
bias here because tagging studies can only take place under
calm sea conditions which may not be representative of aver-
age conditions. Indeed, the average wind speed at a nearby
weather station during the 6-day period of the survey was
12.4 kn, while the average speed when the tags were on was
only 6.1 kn. Higher wind speed could reduce detectability,
causing the estimate of detection probability using the tags to
be too high. One option to address this would be to include
wind speed in the detection probability regression model—
however, predicting detectability at wind speeds observed in
the 6-day period would then mean extrapolating outside the
range of the data from the tag periods, so this approach is
unlikely to be reliable. A second option is to analytically
model the effect of increased noise on the detection algo-
rithm. Instead, being empiricists, we chose a third option,
described in a follow-up study (Ward et al., 2011), that
involves measuring the effect. Ward et al. (2011) added noise
from sound samples taken at the study area under a variety of
wind speeds to the original hydrophone recordings, re-ran
the detection algorithm, and determined the reduction in
performance caused by the additional noise. They found that
detection probability was indeed lower at higher noise levels,
although not by as much as one would predict from theory.

Putting all of the above together, Marques et al. (2009)
came up with a density estimate of 25.2 animals per 1000
km2, with a CV of 19.5% and corresponding confidence
interval of 17.3-36.9. The estimate contains 4 random com-
ponents: n (number of clicks), �̂� (false positive rate), �̂� (detec-
tion probability) and �̂� (cue rate). The percentage contribu-
tion to the overall variance of these was, respectively, 8, 1, 66
and 25%. Hence, to reduce uncertainty, the thing to focus on
in this study would be detection probability and, to a lesser

Fig. 2. Estimated probability of detecting a Blainville’s beaked whale echolocation click on bottom-mounted hydrophones at the Atlantic Undersea Testing and Evaluation
Center (AUTEC), derived from a regression analysis on tagged whales at known locations and orientations relative to the hydrophones. The left plot shows probability of
detection as a function of distance for clicks where the animal is pointed directly at the hydrophones (black line) and at off-axis angles of 45 and 70 degrees (green and blue
lines). The right plot is a heatmap showing probability of detection as a function of vertical and horizontal off-axis angles, evaluated at the smallest observed distance
(0.46km).

v8i3p5_ECHOES fall 04 final  8/14/12  11:17 AM  Page 38



Passive Acoustic Monitoring for Estimating Animal Density 39

extent, cue rate—implying tagging more whales. As we have
discussed, performing the tagging study during the main sur-
vey would also be better.

Examples of other ways to estimate detectability
We presented our first example in some detail, to show the

complexities that can be involved and the potential issues of
which to beware, particularly with the multipliers. However, cue
counting of echolocation clicks is not the only approach for
obtaining a count, and using tagging data is not the only way to
estimate detectability. Here, we illustrate the diversity of
approaches with a few more examples. We start with methods
that rely on having good acoustic data, in the sense of many
hydrophones closely spaced and in some cases sophisticated
acoustic processing. We end up with approaches that are more
applicable in situations where data are sparser. In these latter
cases, inferences will be correspondingly less reliable.

Total counts—beaked and sperm whales in the
Bahamas

These two examples illustrate the case where we can
assume that all objects within some defined spatial boundary
are detected, and all outside that boundary can be excluded.
Hence, we do not need to worry about false negatives. In both
of these examples, the false positive rate is also negligible.
Both examples are based on data from the 82-hydrophone
bottom-mounted array at Tongue of the Ocean, Bahamas.

The first (Moretti et al., 2010) used a cue-counting
approach applied to Blainville’s beaked whale, but instead of
the cue being an echolocation click, it was the start of the
vocal part of a foraging dive. Groups of animals dive togeth-
er, and at some point during their descent they begin echolo-
cating. The clicks produced can be detected relatively easily
on the hydrophone array, and an approximate location deter-
mined either by eye or through a simple smoothing algo-

rithm (see Fig. 3). The hydrophone array is dense enough
that no diving groups can be missed; we also require that div-
ing groups can be separated with accuracy, and that the local-
ization is good enough to determine whether the group is
diving within the area monitored or outside. Given these
assumptions, density can be estimated using

(3)

where n is the number of dive starts recorded within the
study area a during time T, and the two other multipliers
required to convert density of dives to density of animals are
�̂�, the average group size (obtained from visual surveys) and
�̂�, the average dive rate, obtained from DTAG data. The
authors applied both this approach and the click-based
approach to data from a 3-day period during navy opera-
tions. They found that the density of animals (undertaking
foraging dives) decreased substantially during operations,
compared with before and after them, but that’s another story
(see also McCarthy et al., 2011). More relevant here, they
found that both methods gave similar results, but that the
dive counting method was more precise (CV of 11.9% for
dive counting vs. 21.4% for click counting). This was because
there were only two random quantities contributing to the
variance—the estimates of group size and dive rate. Since the
number of dive starts was assumed to be a complete count of
everything in the surveyed area, and since the surveyed area
covered the whole of the area we wish to estimate density for,
then no randomness came from the n. The lesson here is that
if it is possible to do a complete count within the area of
interest, this is probably better, although it depends on how
precisely the various required multipliers can be estimated.

The second example involves density estimation of
sperm whales (Physeter macrocephalus) from a 42-day period
in 2007 (Ward et al., in press 2012). Sperm whales are also

Fig. 3. A set of heatmaps showing the output of a smoothing algorithm applied to the number of Blainville’s beaked whale clicks detected at each of 82 hydrophones in the
Tongue of the Ocean, Bahamas (cf. Fig. 1 for range location). White indicates the most clicks, then yellow, then red. Each plot includes 10 minutes of data, and successive
plots advance by 1 minute from left to right, top to bottom. There appears to be one group diving at the beginning of the time series, at the center left (maybe a second group
is present during the first 10 minutes, at the bottom, likely outside the range). A new dive starts (the “objects” counted in the dive counting method) to appear around minute
4, being clearly visible from around minutes 9 onwards.
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deep-diving animals that use echolocation to find prey–but
compared with beaked whales their echolocation clicks are
much louder, so that “trains” of clicks from the same individ-
ual can often be detected on multiple hydrophones from the
AUTEC range. This means it is possible, with some effort, to
localize individuals, or at least groups of individuals (see
Baggenstoss, 2011, for details), and to estimate the number of
individuals within a diving group as the number of overlap-
ping (direct path) click trains. 

Ward et al. (in press 2012) began by quickly screening the
data to exclude long stretches of time when sperm whales were
not present. For the remaining times, a systematic random sam-
ple of 50 10-minute periods were taken and subjected to more
detailed analysis, where the number of animals diving and click-
ing within the study area was estimated. They assumed that all
clicking animals in the sample periods were counted without
error. Given this, the density estimator can be written

(4)

where n is the total number of animals counted within the
study area a during the k=50 10-minute periods, 𝑝𝑛𝑝 is the pro-
portion of the 42-day period for which sperm whales were not
present in the quick screening, and �̂�𝑣 is the average probabili-
ty of a whale vocalizing in a 10-minute period. This last multi-
plier was estimated from independent DTAG data—not from
the same time or place, and so has similar limitations to those
we discussed before.

Distance sampling—North Pacific right whales in the
Bering Sea

It is quite rare to have a dense enough network of sensors
over the area we wish to monitor that we can be certain to
detect all animals vocalizing (or related cues such as group
dives or vocalizations). Hence, it is almost always necessary
to include an estimate of detection probability as a multipli-
er. The question then becomes how to estimate this probabil-
ity. The answer depends on what data can be gathered about
the detections. If it is possible to estimate the horizontal dis-
tance from a sensor to each detection then the distance sam-
pling approach mentioned earlier may be possible. This relies
on us assuming that the sensors are distributed randomly
with respect to the animals—in this case the pattern of
detected distances tells us about the change in detectability
with distance. If we further assume that all animals at zero
distance can be detected then we can estimate absolute
detectability, and hence the average detection probability
(See Fig. 4).

An example of this approach is Marques et al. (2011),
who obtained preliminary density estimates for North Pacific
right whales Eubalaena japonica in the Bering sea from their
calls—i.e., using a cue-count approach. This species is con-
sidered one of the world’s most endangered, having been sub-
ject to catastrophic whaling in the past, and estimates from
intensive visual and genetic surveys put the population size
in the tens. 

In their paper, Marques et al. (2011) took advantage of
special propagation conditions caused by the shallow water

and amenable substrate. That meant that distances to detect-
ed calls could be obtained by analyzing the received calls and
comparing them to a model of modal dispersal in a shallow
water waveguide (see Munger et al., 2011, for details). They
used standard distance sampling methods to obtain an esti-
mate of the probability of detecting a call, p, and then calcu-
lated density using Eq. 2. Other multipliers required were the
false positive rate, in this case assumed to be zero, and the call
rate, which was obtained from a separate survey that had
been undertaken where groups of whales of known size were
followed and call rates measured.

A significant limitation of this work was that only three
sampling locations were available, straining the assumption
that hydrophones were located at random with respect to the
animals and also making extrapolation from local density in
the region of the hydrophones to density in some larger area
of interest merely speculation. Despite this, when they mul-
tiplied the density estimate by the area of Bering Sea shelf
thought to contain right whales at the times of year sur-
veyed, they obtained estimates comparable with the much
more expensive ship-based surveys (25 whales, with 95% CI
13-47). This suggests that, if the sampling was expanded to a
larger number of randomly-selected sites (20-30 ideally)
then reliable inferences could be made for this important
species.

Spatially explicit capture recapture (SECR)—minke
whales off Hawaii

Another method of estimating detection probability is
possible if animal vocalizations are detected on multiple
hydrophones, and if the same call detected on multiple
hydrophones can be accurately matched. If the hydrophones
are close enough together and vocalizations frequent enough
that animals can be localized and tracked, then the complete
count methods described previously can be used. But in
many cases only occasional calls are heard, and perhaps only
on 1, 2, or 3 hydrophones, so that localization is generally not
possible. Nevertheless, the pattern of detection and non-
detection on the hydrophones gives us an indication both of
where the sound comes from, but also the probability of it
being detected (see Fig. 5). The method makes use of this
information is called spatially explicit capture recapture
(SECR).

Martin et al. (in press 2012) used this approach to esti-
mate the call density for minke whales using 12 days of data
from 14 bottom-mounted hydrophones located at another
Navy testing range, the Pacific Missile Range Facility (PMRF)
off Kauai, Hawaii. Minke whales are known to occur season-
ally in this area, but are extremely visually cryptic; on the
other hand their calls, called “boings,” are readily detected.
Matching (“associating”) boings across hydrophones was
done semi-manually, using timing and frequency informa-
tion, on a subset of the data, and the association information
was used in an SECR analysis to estimate the detection prob-
ability multiplier. This was then used to estimate a boing den-
sity for the whole dataset. Unfortunately, a reliable estimate of
boing rate (i.e., the cue rate multiplier) was not available, so
once again only a preliminary estimate of animal density
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Fig. 4. Illustration of how the distances to detected objects can be used to estimate probability of detection for the case of randomly located point sensors. The area surveyed
by bands of fixed width goes up linearly with increasing distance from the point, as shown in the left plot. Therefore, if we detected everything we would expect, on average,
the number of detections to go up linearly with distance, as shown by the dashed histogram in the center plot. In practice, the number of detections drops off with distance,
as shown by the green histogram. By fitting a curve to this (red solid line) and comparing it with a projection from the origin (red dashed line), we can estimate detectabil-
ity: for example, at a distance of 2.2 we observed approximately half as many detections (blue solid line) as we expect if everything was seen (blue dashed line), so detection
probability is estimated to be 0.5. Detection probabilities for all distances are shown in the right plot (red solid line), which is called a “detection function” in the distance
sampling survey literature.

Fig. 5. Illustration of how the spatial pattern of a detected sound (red circles) on a hypothetical array of 16 hydrophones (black circles) contains information about the prob-
ability of detection. In the left case, the detection probability is high for small distances, but drops off rapidly. Hence each sound is only heard on a compact set of hydrophones,
but tends to be heard on all of them. In the right case, detection probability is low at small distances, but drops off gradually. Here, each sound is heard over widely spaced
hydrophones, but not at all of them. This kind of thinking is the basis for spatially explicit capture recapture (SECR) methods.

could be obtained.
The standard SECR method can be extended to use addi-

tional information. For example, the time of arrival of each
sound at the hydrophones contains information about the
sound’s location, even when it is only heard on two
hydrophones. Another example is that some hydrophones are

directional, and so give information about the bearing to the
sound source. Members of our research group at St. Andrews
are extending the basic method so that it can use this addi-
tional information, and we have found in preliminary work
that it leads to substantial improvements in precision, espe-
cially when sounds are usually heard only on few sensors.
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Trials with known-location sounds—harbor porpoise
in Denmark

Yet another method of obtaining the detection probability
multiplier is possible when you have a set of animals at known
locations relative to the hydrophones. You can then record, for
each of a set of time periods, whether each animal was detect-
ed by each hydrophone, and use these data to construct a
regression of probability of detection against distance (and
perhaps other factors). This is the approach taken in our first
example, above, where the beaked whales were tagged in the
vicinity of the AUTEC hydrophones, and hence their location
each time they clicked could be derived, as well as whether
each of these clicks were detected on the surrounding
hydrophones. Another example of this kind of method is the
study of Kyhn et al. (2012), who were interested in determin-
ing the feasibility of estimating the density of harbor porpoise
(Phocoena phocoena) using commercially-available
autonomous porpoise detectors called T-PODs.6 Kyhn et al.
(2012) set up a visual monitoring station on cliffs at Fyns
Hoved, Denmark, and tracked passing porpoises. They
moored T-PODs below the cliffs, and by splitting each track up
into a set of short segments, could determine for each segment
whether the T-POD registered or not the presence of the por-
poise. 

Acoustic modeling—beaked whales in the Bahamas,
again

The above methods all use additional data, hopefully col-
lected at the time of the survey, to estimate the detection
probability multiplier. However, in some cases such data are
not available—all we know is how many sounds were detect-
ed on each sensor. In this case, it may still be possible to esti-
mate detectability, if we are willing to make some strong
assumptions about sound production, propagation, and pos-
sibly detection. This involves application of the passive sonar
equation, which can be written 

SNR = SL - DL - TL - NL (5)

where SNR is the signal to noise ratio at the receiver, SL is
source level, DL is the directivity loss (i.e., attenuation in the
source level due to the direction the animal is pointing rela-
tive to the hydrophone when they make the sound), TL is
transmission loss as a function of the distance between ani-
mal and receiver and NL is the level of ambient noise. Hence,
given a set of assumptions about the distribution these quan-
tities, one can predict the distribution of SNR for a sound
produced at a given location. SNR can be related to detection
probability either by assuming that sounds above a certain
SNR are certain to be detected, or (better) using an empiri-
cally-derived relationship between probability of detection
and SNR. 

An example of this is given by Küsel et al. (2011), who
derived a density estimate for Blainville’s beaked whale based
on data from a single hydrophone at the AUTEC range. They
obtained distributions of SL, DL, and NL from the published
literature, and used several models of sound propagation to
calculate TL. The relationship between detection and SNR

was estimated using a short sample of data from the study
period that was hand-annotated and then run through the
detector. From these pieces, average detection probability
was derived using a Monte Carlo procedure, sampling from
assumed distributions of animal position and orientation, SL,
DL, NL and estimated values of the SNR-detection probabil-
ity regression parameters. The resulting estimate, 0.014 (CV
17.9%) was not too dissimilar from that obtained by Marques
et al. (2009) using the DTAG data (0.032 with CV 15.9%).
Clearly, however, measurements will be preferable to
assumptions whenever possible.

A half-way-house between this and the distance-based
approach discussed above would be to use the received level
of calls to estimate their distance, by using an assumed trans-
mission loss model and source level distribution, or a regres-
sion relationship built using a sample of sounds where
received level and actual distance are known. One example of
estimating distance from received level is Širović et al. (2009),
using blue whales in the Antarctic Ocean.

Conclusions
Those pesky multipliers

We have shown that it is possible to estimate animal
density from passive acoustic data from fixed sensors, and
have demonstrated a variety of approaches. The best
method depends on the type of data available, and what you
can most reliably count. If you can count all of the individ-
uals within the study area and exclude all of those outside,
then reliable estimation is straightforward. In most situa-
tions, however, this is not possible, and you then need mul-
tipliers to convert the count from calls or groups into ani-
mals, and to deal with false positive and false negative rates.
We have demonstrated several methods for estimating
detectability (the complement of false negative rate). The
most reliable use data collected at the same time as the main
survey, such as distances to detections, or associations in
detections among sensors. A less-satisfactory option is to
undertake a secondary survey, such as tagging some ani-
mals—again it is best if this is done at the same time and
place as the main survey but this is often not possible.
Deriving detection probability estimates from acoustic
modeling alone is a last resort, but often constraints will
mean that other approaches are not possible.

Often the object being counted is an individual vocaliza-
tion: an echolocation click or a call. We then need an estimate
of the vocalization rate. This is often the main impediment to
obtaining a density estimate—either the rate is completely
unknown, or it has been measured in a very different cir-
cumstance and could reasonably be expected to vary over
time or space. Knowledge of the basic acoustic biology of our
study species is often a fundamental limitation. 

Other applications
We have focused here on fixed detectors, but there is

plenty of potential for estimating density from towed
acoustic sensors, behind ships or gliders for example. If the
sensors are designed to get the bearing to detected calls, and
animals vocalize repeatedly, then intersecting bearings can be
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used to obtain a (left-right ambiguous) localization—this is
then amenable to analysis using a different flavor of distance
sampling called line transect analysis—see, e.g., Lewis et al.
(2007).

There are many possible applications in the terrestrial
environment, where animals are hard to see but easier to
hear. Examples include forest elephants, gibbons and frogs.

Future directions
Currently, few surveys are designed with passive acoustic

density estimation in mind. All of the above case studies
made use of data originally gathered for other purposes. One
example of a designed survey is the SAMBAH project7 where
around 300 autonomous detectors have been deployed on a
random grid of locations throughout the Baltic Sea with the
goal of yielding an abundance estimate of the extremely low-
density population of harbor porpoise resident there. Fixed
passive acoustic methods are potentially highly cost-effective
compared with other methods for long-term monitoring
programs, because costs are relatively low after initial set up.
Hence we expect to see increasing uptake where long-term
monitoring is required, such as over the lifetime of oil pro-
duction fields.

We have shown that the methods work best when a large
number of sensors can be distributed through the survey
area, and where at least a subset collect auxiliary information
such as distances to detected sounds. There is great potential
for the development of inexpensive commercial hardware
and associated algorithms and software to facilitate this.

There are plenty of statistical developments left to pur-
sue, including methods for combining different sources of
information to estimate detectability better, methods for sen-
sors that use adaptive duty-cycling to increase their longevi-
ty and optimal survey design.

Lastly, improvements in our knowledge of the acoustic
biology of animal species, coupled with advances in our abil-
ity to detect, classify and localize sounds, will make passive
acoustic density estimation ever more feasible in a wider
variety of situations.AT

Endnotes
1 For example, our research group at St. Andrews develops free

software, Distance, which can be used to design and analyze dis-
tance sampling surveys. The program has acquired over 26,000
registered users covering all major taxa since the windows-based
version was released 13 years ago—see http:// www.ruwpa.st-
and.ac.uk/distance/ 

2 DECAF stands for Density Estimation for Cetaceans from
Acoustic Fixed Sensors. The project ran from 2007–2011 and was
funded under the National Oceanographic Partnership Program
jointly by the Ocean Acoustics Program of the US National
Marine Fisheries Service, Office of Protected Resources and the
Joint Industry Program of the International Association of Oil
and Gas Producers on Sound and Marine Life. In addition to the
other team members, we also thank the project steering commit-
tee for their assistance: Jay Barlow (National Marine Fisheries
Service), Stephen Buckland (University of St. Andrews) and
Walter Zimmer (NATO Undersea Research Center). All project
outputs are available at http:// www.creem.st-and.ac.uk/decaf/.
Our work in this area is also supported by the US Navy, Chief of

Naval Operations, Energy and Environmental Readiness
Division (Code N45).

3 We omit all details of the acoustic processing techniques
required to yield the raw materials for density estimation: the
detected and classified (and in some cases associated and local-
ized) vocalizations. Other articles in this issue describe some of
the work in this area, as does an article from last year (Tiemann
et al., 2011). Recent reference texts are Zimmer (2011) and Au
and Hastings (2009).

4 The CV on a quantity that is the product of a set of independent
random quantities can be calculated using the “delta method,”
which just involves adding the squared CVs of each of the inde-
pendent quantities—see e.g., Marques et al. (2009).

5 This is something of an over-simplification. DTAG data alone
yields an imprecise “pseudotrack,” which needs to be combined
with positions estimated from, e.g., acoustic localization to give
a useable track—see Ward et al. (2008) and references therein
for details. 

6 The newer versions are called C-PODs; they are manufactured by
Chelonia Limited (www.chelonia.co.uk).

7 Static Acoustic Monitoring of Baltic Sea Harbour Porpoise—see
www.sambah.org. 
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