In both style and content, and without exception, Miguel’s writings read as celebrations of discovery and understanding, and are joys to behold.
and normal responses, with the square of Poisson’s ratio, γ, as the small parameter. Somewhat surprisingly, Rudolph found that well below the shell’s ring frequency, with a radial drive the zeroth order ratio of normal-to-surface motions is one of local reaction. It is not until the theory is carried out to $O(\gamma)$ that “wave propagation from axial compression begins to assert itself”. After his formal presentation but quite applicable to his talk, Rudolph shared a wonderfully amusing anecdote that typified Miguel’s humor, often self-deprecating. Apparently Miguel was able to argue, albeit without much success, that his appearance of weight gain was merely a consequence of Poisson coupling owing to his becoming shorter with age.

Ann Stokes, in her paper “Sound radiation by parallel coated plates separated by a fluid layer: here and then”, fondly recalled Miguel’s extraordinary facility to reduce this complex configuration, and in turn complex set of equations, to a manageable asymptotic mathematical model that was readily solved, while retaining the fundamental physics. In this particular case, with the primary interest being the far field (on-axis) radiated pressure from driven submerged vehicles, a lumped parameter model for the various individual layers generated valuable insights into the resonance enhancements predicted by the full analytical model. And, as described by Ann, such insights continue to be beneficial, when similar models are developed for evaluating noise control strategies for underwater pile driving activities. More generally, this modeling proficiency became one of Miguel’s trademarks, and led to many of the canonical problems in structural-acoustics with which he is identified.

Klaus Kleinschmidt talked about an often overlooked aspect of Miguel’s career, his work on acoustical products development, in his paper “Cooperating with Miguel on improvements of the acoustical product SOUNDBLOX”. SOUNDBLOX is a slotted concrete block, designed to behave as a Helmholtz resonator, enhancing acoustic absorption in the vicinity of the cavity natural frequency. The cavity may be filled with absorptive material and a broader absorption spectrum was obtained with multiple cavities. As Klaus noted, the fact that the product, first introduced in the 1950’s is still on the market, reflects well on their collaboration.

Miguel Junger was born in Dresden, Germany on 23 January 1923. His father was a journalist for the French and German press, and his family lived in Germany, Spain and France, where he received his high school education at the French Lycee. Miguel arrived in the USA with his parents in 1941. He entered the Masssachusetts Institute of Technology, earning the B.S. degree in 1944 and the M.S. degree two years later. He subsequently went to Barry Controls where he was mentored by C.E. Crede. His work with Crede on the shock resistance of shipboard mechanical equipment was published in book form by the Navy Bureau of Ships. Here, it is inter-