If you stare at a banjo hard enough, you can see two interacting, wave-bearing systems; specifically, strings and a circular membrane. What’s more, they are systems for which we can solve the equations of motion and thereby describe the propagation of structural vibrations; i.e., waves. Why this has not been done before is a mystery to me.

At its lowest level of abstraction, the “simplified” banjo shown in Fig. 1 is basically two interacting vibrating systems: a plucked string and a circular membrane. By “interacting” I mean that waves in the string generate waves in the membrane, and visa versa, so that the whole instrument vibrates together. The five-string banjo is a little more complicated as it has six interacting systems—five strings and one membrane. The equations which describe the way waves travel in these systems, how they radiate sound, and how they interact are fairly straightforward. For example, a string has only two coordinates, position and time, and the equation which describes the propagation of a disturbance along the string, the wave equation, links these two variables in such a way that if you know the wave’s position at any one time, you know it at any other time. It is an analogous situation in the membrane but complicated somewhat by it being a two dimensional surface and by having the bridge being placed away from the membrane’s geometric center.

Another complication, common to both the strings and the membrane, is that every time a wave hits something, it changes as it reflects and/or passes through. With this, the math gets pretty messy. Part of the “art” of modeling is to decide where you can simplify things without throwing out the essence of what you are looking for. For example, there are undoubtedly waves traveling in the neck as though it were a sixth string; are they important? And there are also reverberations within the bridge, tone ring, and other parts: are they important? The model which I developed and describe here does not consider reverberations of waves in these parts, but does account for their influence on the reverberation of waves in the head and strings. As banjo modeling gets more sophisticated, there are many such considerations which will become important, and with this will come more pressure to keep the model as simple a possible while retaining what you set out to discover. In this sense, developing a model is a little like collecting garbage; you really should know what you are going to do with it before you start.

Why do we go to so much trouble to model the banjo? Partly to build better banjos or help people who fix or play banjos get a better sound by understanding how the various components of the instrument work together to produce the sound. More generally, we do this sort of thing (modeling) to build a better anything. This story describes the why and wherefore of analytical modeling.

The strings

Given the tension in the string (provided by the tuning peg) and its mass we know how an initial displacement (a pluck) travels, and given the properties of the nut, bridge and clamp we know how this traveling disturbance reflects off the ends. We call this a structural vibration, or a wave, and this wave will travel back and forth in the string reflecting alternately from one end and the other. And just as it takes some force to contain the end of a jump-rope, it takes force to keep the string connected (through the bridge) to the membrane. We can calculate all of this. Figure 2 describes a pluck in the upper part of the figure as, initially, a triangular shaped displacement shown as a dotted line. The vertical scale in the figure is greatly exaggerated to make it easier to see what is going on. Normally, the displacement of the string is only about one-thousandth of its length. The figure also shows what the string shape would be after about 12 reverberations. Note that the response of the string has diminished in time because there has been energy shared with the other systems and because all the systems have losses. Note, also, that the triangular shape of the pluck has smoothed to the point of looking like our jump-rope; specifically, it resembles the sinusoidal shape we generally expect from a vibrating string. There are several factors which contribute to this smoothing.

“Developing a model is a little like collecting garbage; you really should know what you are going to do with it before you start.”
effect. The largest is that the strings are not completely flexible; they have some stiffness that causes the various frequency components in the wave to travel at different speeds. This disperses or spreads the wave shape as it propagates and is called “dispersion.”

Back to the jump-rope analogy. You may recall that it takes some force on your part to hold the end of the rope. For a plucked string, the force analogous to what your hand supplied is supplied by the membrane. I have calculated this force and show it in the lower part of Figure 2. This force, when transferred through the bridge to the membrane, causes the membrane to deflect and radiate sound. The force varies with time, and this variation depends on the shape of the wave hitting the bridge, and this, in turn, is determined by where the string is plucked. Figure 2 shows two illustrative cases: in the top case the string is plucked as shown in the top part of the figure. This is near where a player would normally pluck. In the lower case the string is plucked mid-way between the bridge and the nut. Plucked at the center, the initial shape of the string is a little more like a (half) sine wave than the top curve; and so the imparted force and the shape settle in to a sine-wave shape more quickly, i.e., the string settle into vibrating at a specific frequency that we hear as a particular note. We call this a mode. The settling-in of the pluck to this mode is more apparent in the slow motion, accompanying, movie version of the evolution of the pluck in time. [See sidebar - Movie 1-StringResp] Finally, the settling-in process takes only a small fraction of a second and during that time, the vibration is not modal and, therefore, not a well-defined note. This is the “twang.”

The membrane

Like the string, the membrane is also under tension and has mass but in this case waves travel as circles expanding outwardly from their origin rather than along a line. This would be orderly enough except that their origin (the bridge) is not in the center of the circle. As a result, different parts of the expanding wave meet the boundary (the clamp) at different times. It is much easier to visualize this added complexity by looking at the propagation of a very short wave. Such a wave would be impossible to generate experimentally, but in the world of mathematics, we can do pretty much anything. Thus, Fig. 3 shows a snapshot of such a calculated wave which has left the source and traveled to a point where part of the wavefront has reflected from the clamp. Note that the vertical scale is exaggerated and that the pulse goes from positive amplitude (upward) to negative (downward) at the reflection. Every reflection at the clamped edge will cause such a reversal. Also, keep in mind that the wave loses energy (and amplitude) as it travels and when it encounters either the clamp or the bridge. Again, the complexity can be seen more easily in the accompanying time evolution movie [Movie 2-ShortPulse].

The ability to generate such a non-physical pulse and to readily change material properties illustrates several of the major benefits of modeling. In this case it illustrates the com-
plexity of a pulse reverberating in a circular membrane. In other cases, it allows one to play the “what if” game by adjusting parameters with just a few keystrokes. A word of caution here; the “what if” game, while illuminating, can be very irksome to experimentalists who are constrained to real-world materials. Admittedly, the many approximations which go into this and most modeling, mean that analytical models can never be exact. The process is, however, often useful to predict if a proposed change is leading you where you want to go.

Replacing the short pulse with a more realistic excitation imparted to the head by the string, we get head displacements which look quite different and are, in fact, similar to measured results. A snapshot of a calculated head displacement while the head is being driven by a damped sinusoidal oscillation is shown in Fig. 4. Here the frequency of the drive is close to one of the natural resonance frequencies of the head. The accompanying movie of the head response [Movie 3-LongPulse] covers only a fraction of a second in actual time. During this time you can observe the head excitation build for a few tens of milliseconds and then slowly diminish as the drive diminishes and the head dissipates energy. Calculations also allow one to compare the energy lost to material damping and sound radiation.

The head tension

Another advantage of studying the banjo is that many of its set-up parameters are easily adjusted and many of its parts are easily replaced. This is one reason that so many banjo players fiddle with their banjo! One of the most influential parameters is the head tension. Although I do not do much experimental work any more, I do appreciate the need for it and particularly the need for “ground truth” when modeling. So I took my banjo, tapped the head with a screwdriver, and recorded the sound. This “delta function” excitation should, in principle, excite all the head modes and a spectral analysis of the recorded sound should display these modes. The results are shown in Fig. 5.

To calculate the modal response for comparison, I calculated the average magnitude of the head response for harmonic (single frequency) drives as a function of frequency. This would not be exactly the same quantity measured but should show the same frequency peaks. The comparison of measured peaks and calculated ones are shown in Fig. 5.

I could not find tabulated values for the flexural wave speed in mylar membranes under various tensions, so I adjusted the tension in the calculation (a single number in the computer code) until the first peak at 295 Hz matched the measured one; voila, all the other peaks lined up! Also, the

DOWNLOAD THE BANJO VIDEO CLIPS

Shortly after the print copy of this issue is mailed, it will also be published in the Acoustical Society of America’s Digital Library. The Table of Contents may be reached directly by going to your internet browser and typing the following Uniform Resource Locator (URL) in the address block: http://scitation.aip.org/dbt/dbt.jsp?KEY=ATCODK&Volume=6&Issue=3. At some point in the download process you will probably be asked for your ID and Password if you are using a computer that is not networked to an institution with a subscription to the ASA Digital Library. These are the same username and password that you use as an ASA member to access the Journal of the Acoustical Society of America. Open the abstract for this article by clicking on Abstract. At the bottom of the abstract will be a link. Click on the link and a zipped folder (DickeyData.zip) will be downloaded to your computer (wherever you usually receive downlinks). Unzip the entire folder (as a whole) and open the folder DickeyData. There are 4 files. Do not remove any files—simply open the file called DickeyOpenMe. It is an interactive pdf file. By clicking on any of the hyperlink clips in this file, you should see the video clip associated with that link. The video clip was recorded in QuickTime’s .MOV format. If you have difficulty in playing it, you might download the PC or MAC version of VLC Media Player from www.videolan.org. This is a non-profit organization that has created a very powerful, cross-platform, free and open source player that works with almost all video and audio formats. Questions? Email the Scitation Help Desk at help@scitation.org or call 1-800-874-6383.
speed which did the matching, 150 m/s, is exactly what was used by Rae and Rossing in their measurements of vibration mode patterns of banjo heads.

There are several aspects of Fig. 5 which are of interest. One is that the peaks are not harmonic in the sense that all the higher resonances are multiples of the first harmonic at 295 Hz. Also, the double peak near the third resonance is in both the measured and calculated spectra. I do not know what is causing this. Lastly, there is an exponential “background” in the calculated data which adds a sort of floor to the data and I do not know where that comes from either. If this were subtracted from the response the agreement between experiment and calculation would be remarkable.

The sound

A significant, and certainly the most pertinent energy loss to the membrane waves is the energy radiated as sound. As a section of the membrane moves up, it pushes and condenses the air above it causing a slight increase in ambient pressure; as it subsequently moves down, it forms a rarefaction, a slight decrease from ambient pressure. This alternating pressure/rarefaction is, by definition, a sound wave. The perceived loudness of this sound wave, or the signal recorded by a microphone at some distance from the banjo, is proportional to the average response of the membrane surface.

Here is the procedure for calculating the radiated sound from a plucked banjo:
1) calculate the force (as a function of time) exerted on the banjo head by the plucked string,
2) use this force to excite waves in the head,
3) for each time interval, average (integrate) the response over the surface of the head,
4) plot this as a function of time.

This brings us to Fig. 6 which uses the above prescription with the 1st string plucked at 0.1 m from the bridge. This is the bottom string in the banjo pictured in Fig. 1 and is tuned to 293 Hz. (sometimes referred to as D4). The tension in the calculation was adjusted so that the first head resonance agreed with the measured one at 295 Hz.

There are several interesting aspects of Fig. 6. First, note that radiated sound increases for the first 30 to 40 ms while energy is being transferred from the string to the membrane. Also note that there are two distinct decay curves: one lasting about 200 ms and the other still persisting at 1 s. It is also interesting that the waveform is much “cleaner” (i.e., sinusoidal) after the instrument settles into the slow decay mode. It is conjecture on my part, but I suspect that the “ragged” waveform in the early stages of sound radiation accounts for the “twang” associated with the classic banjo sound, and the nearly tonal waveform later is the ringing.

So there you have it, summarized in a sentence: a string held at both ends is plucked, it interacts with and causes waves in a membrane which radiates sound. It may seem like a lot of trouble for something which can be summarized in one sentence, but here is the deal. Once the model is on the computer, it takes only a few seconds to calculate allowing you to easily change things like head tension, string gauge, bridge mass, etc. to see what happens to the sound.

And now the bad news. Real world systems are generally too complicated to be modeled accurately. There are a number of “simplifying assumptions” in this and virtually all analytical models. Also, in the case of musical instruments, analytical models compete with the most sophisticated acoustic analyzer of all—the ear. Models and experiments are a long way from discerning the subtleties of “good tone.” The evolution of good tone in musical instruments has been largely trial and error.
and, as such, has been a slow process. Analytical modeling offers a useful tool to estimate the sensitivity of tonal parameters to proposed design changes and possibly shorten the design cycle. There is “sound at the end of the tunnel.”

References
5 It is not considered good practice to have the head resonance this close to a string resonance, as this seems to produce a very loud note—something like the dreaded “wolf tone” sometimes seen in other stringed instruments. Of course, with the banjo, getting rid of this is just a matter of adjusting the head tension with the tensioning nuts seen around the clamp ring in Fig. 1. Presto, you have moved the head resonance to wherever you want it. Do not try this with your cello.

My friends laughed at me when I told them that I wanted to go into modeling as a career. Well here I am, only about 35 years out of graduate school and still holding true to my mantra: “If it has no possible use, it must be good science.” I did have a career doing useful work helping make submarines quiet for the Navy, and then a decade with Johns Hopkins University doing research. Altogether I have published about a hundred papers, mostly in structural vibrations. About a third of these were co-authored with the late Gideon Madanik. I spent an interesting year in 1983–84 as a Congressional Science Fellow, was chair of the Acoustical Society of America’s Membership Committee for almost a decade, and represented the Society and the American Institute of Physics in various international committees. I am now pretty much retired but still writing a few papers, tending an American Chestnut Foundation orchard on our farm in Davidsonville, Maryland, doing and teaching woodturning, and, oh yes, I play banjo in a couple of local bluegrass bands.