
encompass all of the techniques used to
extract the useful information from data.
Such techniques as image processing,
tomography, array processing, spectral
processing, model-based processing, etc.
are implied by this terminology) forms

the basic nucleus of many acoustical applications. It is a spe-
cialty area that many acousticians apply in their daily techni-
cal regimen with great success such as the simplicity in
Fourier analysis of resonance data or in the complexity of
analyzing the time-frequency response of dolphin sounds.
Acoustical applications abound with unique signal process-
ing approaches offering solutions to the underlying problem.
For instance, the localization of a target in the hostile under-
water ocean acoustic environment not only challenges the
acoustician, but also taxes the core of signal processing basics
thereby requiring that more sophistication and a priori
knowledge be incorporated into the processor. This particu-
lar application has led to many advances both in underwater
signal processing as well as in the development of a wide vari-
ety of so-called model-based or physics-based processors. A
prime example of this technology is the advent of the model-
based matched-field processor7-9 that has led not only to a
solution of the target localization problem, but also to many
applications in other acoustical areas such as nondestructive
evaluation and biomedical imaging. So the conclusion is the
same, signal processing is a necessary ingredient as a working
tool that must be mastered by the acoustician to extract the
useful information from uncertain measurements.

Acoustics
Let us look at acoustical signal processing from a slight-

ly different perspective. Acoustical data can be used to
extract useful information about signal sources, the sur-
rounding environment and background noise much the same
as any other modality (e.g., electromagnetics: radio frequen-
cy (RF), infrared (IR), optics, etc.). The information is clear-
ly different but can also be used effectively. The uniqueness
afforded is determined by how the acoustic signals propagate
within the particular environment. The information available
or carried by the acoustic signal (wave) depends heavily on
the source characteristics and the environment supporting
the propagation in which the wave interacts or causes these
signals to bounce, bend and spread in a multitude of direc-
tions distorting both their shape and arrival times at sensor
locations. Localization (incoherent) of the source is per-
formed by estimating the arrival times (time delays) and
using geometric relations (triangularization). The source
characteristics also determine the underlying acoustical

SIGNAL PROCESSING IN ACOUSTICS:
SCIENCE OR SCIENCE FICTION? 

Signal processing in acoustics is
based on one fundamental con-
cept—extracting critical informa-

tion from noisy, uncertain measurement
data.1-5 Acoustical processing problems
can lead to some complex and intricate
paradigms to perform this extraction especially from noisy,
sometimes inadequate, measurements. Whether the data
are created using a seismic geophone sensor from a moni-
toring network or an array of hydrophone transducers
located on the hull of an ocean-going vessel, the basic pro-
cessing problem remains the same—extract the useful
information. Techniques in signal processing (e.g., filtering,
Fourier transforms, time-frequency and wavelet trans-
forms) are effective; however, as the underlying acoustical
process generating the measurements becomes more com-
plex, the resulting processor may require more and more
information about the process phenomenology to extract
the desired information. The challenge is to formulate a
meaningful strategy that is aimed at performing the pro-
cessing required, even in the face of these high uncertain-
ties. This strategy can be as simple as a transformation of
the measured data to another domain for analysis or as
complex as embedding a full-scale propagation model into
the processor.5-7 For example, think of trying to extract a set
of resonances (damped sinusoids) from accelerometer time
series. It is nearly impossible to calculate zero-crossings
from the time series but it is a simple matter to transform
the data to the spectral domain using the Fourier transform
and then applying the property that sinusoids are impul-
sive-like in Fourier space facilitating their extraction
through peak detection. Finding a sinusoidal source propa-
gating in the ocean is another matter that is quite complex
due to the attenuation and dispersion characteristics of this
harsh environment. Here, a complex propagation model
must be developed and applied to “unravel” the highly dis-
torted data to reveal the source—a simple Fourier trans-
form will not work. The aims of both approaches are the
same—to extract the desired information and reject the
extraneous, and therefore, develop a signal processing
scheme to achieve this goal. In this article, we briefly dis-
cuss this underlying signal processing philosophy from a
“bottoms-up” perspective enabling the problem to dictate
the solution rather than vise-versa. Once accomplished, we
ask ourselves the final and telling question, “Did it work or
are we kidding ourselves?” Are the results science or are
they science fiction? 

More specifically, signal processing (Note that through-
out this article we will use the term “signal processing” to

“…to extract the desired

information and reject the

extraneous…”

James V. Candy
Lawrence Livermore National Laboratory and

University of California, Santa Barbara 
Livermore, California 94551
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operational frequency band and therefore the sensors used to
measure the propagated data with wavelengths inversely pro-
portional to the source frequency. Clearly, compared to RF
transmissions, acoustic waves propagate at long wavelengths
and are affected by materials much differently.1-4 Scattering of
waves is determined by the object size at a wavelength or less.
The point is that the advantage or disadvantage of acoustical
waves over other modalities is determined by the acoustical
properties of the source as well as the materials composing
the propagation medium or environment. For instance, the
audible acoustic range is the frequency band from 20 Hz to
20 kHz and is measured by microphone sensors, while seis-
mic signals reside in the 0 to 10 Hz band measured by net-
works of geophones. Inaudible ultrasonic signals are typical-
ly in the 20 kHz to 20 MHz regime measured by piezoelectric
crystal sensors.1,3,4

Acoustics can be used to perform the usual tasks of
detection, classification and localization much the same as
RF with sonar replacing radar in the active problem. For
instance, acoustic sources can be localized by triangulariza-
tion techniques much like finding the epicenter of an earth-
quake by a worldwide network of seismometers using their
known location and the arrival times of the seismic event.
Because of the large wavelengths in acoustic signals, arrays
can be designed for coherent (phase) processing, that is, an
array of acoustic sensors can be used to localize an acoustic
source and passively scan an environment through beam
steering while using beamforming techniques to search for
sources. The human ear is a perfect example of passive
(coherent) source localization in the audible range. In more
complex environments, physics (model) based techniques
can be used to enhance further the measured signal and per-
form the localization.5-7

The processing of acoustic data is necessary to
extract the desired information from the noisy measure-
ments. For example, if a voice recording was available, then
the microphone data could be processed to separate the voice
signature from the environmental background and noise
thereby decomposing the acoustic information of each.
Kennedy assassination data was thoroughly analyzed from
microphone data acquired from available audio and
video/audio recordings. The number and location of shots
fired were extracted from the recordings.2 The frequency
characteristics of the sounds were analyzed even further to
extract information about the environment (time-frequency
estimation). Active acoustics (sonar) is typical in many appli-
cations ranging from the underwater tracking of a moving
target, to locating tumors in tissue for biomedical applica-
tions, to imaging materials using an acoustic microscope.
Vibrational acoustic signals provide critical information
about structures and their condition in structural integrity
studies. Thus, acoustical data much like RF or radar data
uniquely provides information about the source, background
environment, and noise that can be processed to extract use-
ful information depending on the source characteristics and
the supporting propagation medium as well as objects popu-
lating that particular environment (e.g., urban environment
with buildings).

Signal processing approach
Signal processing relies on any a priori knowledge of the

phenomenology generating the underlying measurements.
Characterizing this phenomenology and propagation physics
along with the accompanying measurement instrumentation
and noise are the preliminaries that all acousticians must
tackle to solve such a processing problem. In many cases this
is much easier said than done. The first step is to determine
what the desired information is and typically this is not the
task of the signal processor, but that of the acoustician per-
forming the study. In our case, we assume that the investiga-
tion is to extract information stemming from acoustic signals
either emanating from a source whether it be an autonomous
unmanned vehicle (AUV) passively operating in the deep
ocean or a vibrating structure responding to ground motion.
Acoustic applications can be very complex especially in the
case of ultrasound propagating through complex media such
as tissue in biomedical applications or through heteroge-
neous materials of critical parts in nondestructive evaluation
(NDE) investigations.1,3,4 In any case the processing usually
involves manipulating the measured data to extract the
desired information, such as, location and tracking of the
AUV, to failure detection for the structure, or tumor/flaw
detection and localization in both biomedical and NDE.6,7

Another view of the same problem is to decompose it
into a set of steps that capture the strategic essence of the pro-
cessing scheme. Inherently, we believe that the more a priori
knowledge about the measurement and its underlying phe-
nomenology we can incorporate into the processor, the bet-
ter we can expect it to perform—as long as the information
that is included is correct. One strategy, called the “model-
based approach,” provides the essence of model-based signal
processing.6,7 Some believe that all of the signal processing
schemes can be cast into this generic framework. Simply, the
model-based approach is “incorporating mathematical mod-
els of both physical phenomenology and the measurement
process (including noise) into the processor to extract the
desired information.” This approach provides a mechanism
to incorporate knowledge of the underlying physics or
dynamics in the form of mathematical propagation models
along with measurement system models and accompanying
uncertainties such as instrumentation noise or ambient noise
as well as model uncertainties directly into the resulting
processor. In this way the model-based processor enables the
interpretation of results directly in terms of the problem
physics. The model-based processor is really an acoustic
modeler’s tool enabling the incorporation of any a priori
information about the particular application problem to
extract the desired information. As depicted in Fig. 1, the
fidelity of the incorporated model determines the complexi-
ty of the processor. These models can range from simple
implied non-physical representations of the measurement
data such as the Fourier or wavelet transforms to parametric
black-box models used for data prediction, to lumped math-
ematical physical representations characterized by ordinary
differential equations, and to full physical partial differential
equation models capturing the critical details of the acoustic
wave propagation in a complex medium. The dominating

Signal Processing in Acoustics 7



oscillation frequency). Our
first “simple” approach to ana-
lyze the measurement data
would be to take its Fourier
transform and investigate the
various frequency bands for
resonant peaks. The result is
shown in Fig. 2b, where we
basically observe a noisy spec-
trum and a set of potential res-
onances—but nothing really
conclusive. Next we apply a
broadband power spectral esti-
mator with the resulting spec-
trum shown in Fig. 2c. Here we
note that the resonances have
clearly been enhanced and
appear in well-defined bands
while the noise is attenuated by
the processor, but there still
remains a significant amount
of uncertainty in the spectrum
due to all of the resulting spec-

tral peaks. Upon seeing these resonances in the power spec-
trum, we might proceed next to a gray-box model to enhance
the resonances even further by using our a priori knowledge
that there is essentially one dominant resonance we seek. The
results of applying this processor are shown in Fig. 2d.
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factor of which model is the most appropriate is usually
determined by how severe the measurements are contami-
nated with noise and the underlying uncertainties encom-
passing the philosophy of “letting the problem dictate the
approach.” If the signal-to-noise ratio (SNR) of the measure-
ments is high, then simple non-
physical techniques can be used to
extract the desired information.
This approach of selecting the
appropriate model is depicted in the
signal processing staircase of Fig. 1
where we note that as we progress up
the “modeling” steps to increase the
SNR, the complexity of the model
increases to achieve the desired
results. In the subsequent sections of
this article, we will use the model-
based framework to explain the var-
ious classes of acoustical signal pro-
cessing problems and attempt to
show—even at a simple level—how
these schemes can evolve within this
framework. This is our roadmap.5-7

Signal processing steps
We start with the simple first

step and show how we can progress
up the signal processing staircase to
analyze a problem. Suppose we have
a noisy acoustical measurement
(Fig. 2a) of a single oscillation fre-
quency in random noise (SNR = 0
dB, i.e., equal values of signal to
noise) and we would like to extract
the desired information (the single

Fig. 1. Signal processing approach: the model-based “staircase.” [Step 1] “Simple” non-parametric implicit models. [Step 2]
“Black-box” models (transfer function, autoregressive, moving average, polynomial, etc.). [Step 3] “Gray-box” models (trans-
fer function, autoregressive moving average, etc.). [Step 4] “Lumped” physical ordinary differential equation models (state-
space, parametric, etc.). [Step 5] “Distributed” physical partial differential equation models (state-space, etc.).

Fig. 2. Simple oscillation example. (a) Noisy oscillation (10.54 Hz) in noise. (b) Raw Fourier spectrum. (c)
Nonparametric spectrum (black-box). (d) Parametric spectrum (gray-box). (e) Model-based spectrum (ordinary dif-
ferential equation model).
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Finally, we use this extracted model to develop an explicit
model-based processor (MBP) by developing a set of har-
monic equations (ODE) for a sinusoid in noise and construct
the MBP based on these relations. The results are shown in
Fig. 2e. So we see that once we have defined the acoustical
problem, and assessed the a priori information including the
underlying phenomenology, then we can proceed up the
staircase and exit any time we are satisfied with the result.
This is the “bottoms-up” approach.7

Next we choose to investigate this approach in more
detail by selecting some processing areas with an accompa-
nying set of acoustical applications. Here we illustrate not
only the fundamental approach to problem solving, but also
to observe some of the popular processing paradigms avail-
able to the acoustician for analysis and information extrac-
tion. Our aim is to define a specific problem that represents
a class of problems and then show some of the potential sig-
nal processing solutions available, demonstrating them
through simulation or experiments.

Step 1: Simple spectral estimation techniques
Classical spectral analysis is a very powerful example of

a set of tools that have evolved in signal processing especial-
ly in acoustics. Here a raw measurement is “transformed” to
the spectral or Fourier domain for analysis. Modern tech-
niques of spectral estimation can be considered both “black
or gray-box” processors and even physics-based processors
depending on the underlying application.5 We call the black-
box/gray-box methods “parametric processors,” since they
employ a variety of underlying model sets to achieve their
enhancement and improved spectral estimation. Thus, the
parametric spectral estimator consists of a processor
employed to estimate the parameters of the underlying

model set and then perform a power spectrum estimate using
this model. 

Modern spectral analysis techniques easily extrapolate to
the space-time domain as long as we assume that the incom-
ing wave front is separable in space (array) and time (or fre-
quency). In this context, we can consider a measurement
array as a spatial sampler of the arriving wave front. If we fur-
ther assume that the temporal portion of the wave is restrict-
ed to a narrow frequency band, then we collapse its temporal
response to a single frequency line (in the Fourier space) that
can also be considered a parameter. So we see that estimating
the arrival angle in the case of a planar wave front or the
source location in the case of a spherical wave front can be
considered a problem of “spatial” spectral estimation and all
of the usual modern techniques (with some restrictions)
apply to the array signal processing problem as well.5,7

In acoustics, a large set of problems reduce to array pro-
cessing or spatial spectral estimation in this context. Such
problems as ocean acoustic (sonar) signal processing for tar-
get direction-of-arrival (DOA) estimation or localization fall
into this category along with ultrasonic NDE and biomedical
processing searching for flaws or abnormalities.1-4 Clearly,
seismic array processing, of which most of these ideas evolve,
is a root application of arrays for epicenter location and
velocity estimation. With this information at hand, let us
consider a simple example of a plane wave impinging on a
sensor array to convey these ideas using a concrete example.

Spectral (spatial) estimation for direction-of-arrival
Suppose a 16-element linear array with acoustic sensors

uniformly spaced at 2.5m is impinged upon by a set of plane
waves generated from three (3) sources emanating from 20o,
40o, and 55o incidence angles. The temporal frequency is

Fig. 3. Modern spectral (spatial) estimation using the maximum entropy method parametric estimator for direction-of-arrival estimation of three plane waves at 20o, 40o,
55o arrival angles; (a) Synthesized 16-element array temporal measurements (signal-to-noise = 0 dB) with true source locations; (b) Maximum-entropy-method spatial
spectral estimation results with estimated arrivals at 20.4o, 40.0o, 53.6o generated from an ensemble of 256 realizations. 



age (pole-zero), state-space, etc.); (2) estimate the model
parameters from the data; and (3) construct the signal esti-
mate (e.g., spectrum, impulse response, etc.) from these
parameters.7 Again this can represent the “black-box” step if
the parameters have no physical interpretation or the “gray-
box” step if they do have physical relations. 

Parametric signal processing for prosthetic heart valve
classification application

As a parametric processing application, consider the
problem of estimating flaws or cracks in prosthetic heart
valves (see Fig. 4a). By placing microphones on a patient’s
chest and listening to the sounds radiated by the valve, its
condition can be determined. From the structure of the pros-
thetic value and its interacting components, it is possible to
isolate the sounds associated with each component and clas-
sify potential problems. Since these sounds are essentially
vibrational resonances, an all-pole (autoregressive) model is
selected to perform parametric signal processing and investi-
gate the condition of the valve under test through a variety of
statistical tests. Note how the acoustical problem is dictating
the processing approach and potential solution. The process-
ing is illustrated in Fig. 4. The approach selected in this appli-
cation is to construct a classifier to determine in which class
(failure or normal) the valve belongs (Fig. 4b). The heart

300 Hz with corresponding propagation speed of 1500
m/sec. The sensor data are generated at 0 dB SNR. The
results of applying a modern parametric estimator (maxi-
mum entropy method (MEM))5 developed for harmonic
(sinusoidal) waves in noise are shown in Fig. 3, where we
observe the ensemble results of the 16-sensor channel spec-
tral estimates. The results demonstrate that the algorithms
are capable of providing reasonable DOA estimates in such a
noisy environment.

Steps 2 & 3: Parametric signal processing (black/gray-
box approach)

Perhaps even a more reasonable application of modern
signal processing follows directly from the black/gray-box or
parametric approach. In this realm of processing the acousti-
cian can choose from a set of models that reasonably approx-
imate the underlying phenomenology and essentially “fit” the
model to the data through a variety of estimation algorithms.
This type of processing evolves from the signal processing lit-
erature, from applications in speech (e.g., linear prediction,
coding, recognition, etc.),10 and controls called system identi-
fication (e.g., adaptive control, noise cancelling, etc.).11 In this
domain the parametric approach is to: (1) select a represen-
tative model set (e.g., transfer function, autoregressive (all-
pole), moving average (all-zero), autoregressive moving aver-

Fig. 4. Prosthetic heart valve acoustic analysis and condition detection using parametric signal processing (black/gray-box) techniques: (a) prosthetic heart valve under test;
(b) overall processing paradigm to detect and classify condition; (c) parametric (all-pole) model and estimated signal/spectrum; and (d) ensemble spectrum, instantaneous
spectrogram (power versus time versus frequency) image, and peak frequency probability distribution or histogram (feature) for condition classification.
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valve radiates a sound with
each beat that is measured by
the microphone(s) positioned
on the patient’s chest. The noisy
measurement data is enhanced
and initially analyzed (Fig. 4c)
and then processed further.
Here a spectrum and instanta-
neous spectrogram are estimat-
ed from the model parameters
and displayed in Fig. 4d. The
frequency peaks in the spectro-
gram are estimated, and a peak
resonant frequency probability
distribution histogram is con-
structed to provide a feature
vector that can be used to per-
form the classification deter-
mining the valve’s condition.12

Step 4: Model-based 
processing (lumped 
physical approach)

Model-based signal pro-
cessing7 is the next step in the
signal processing approach. It
has distinct advantage over
other approaches because the processor is developed directly
in the acoustician’s frame-of-reference, that is, in his phenom-
enological space. Not only does it require physics-based mod-
els of the underlying phenomenology, but it also requires
knowledge of the measurement instrumentation and noise
processes to construct a good processor. Here the acoustician
is “thinking” directly in terms of the acoustics and not infer-
ring results from a variety of analysis tools (e.g., Fourier and
wavelet transforms) that are not directly related to the under-
lying propagation physics. The model-based approach is sim-
ply incorporating mathematical models of the underlying phe-
nomenology including measurements and noise into the pro-
cessing scheme—this is exactly how the acoustician becomes
an integral part of the processing by providing the acoustic
models that are embedded into the model-based processor
(MBP). Not only is there direct benefits of thinking in the
same physical coordinates of the acoustic problem, but also
gaining a deeper understanding of the instrumentation per-
formance and noise/uncertainty processes that contaminate
the problem. This is the good news. Of course, if the model is
inaccurate and does not represent the phenomenology ade-
quately, then the results can be erroneous and sometimes very
misleading (science or science fiction?). Fortunately, many of
these processors provide “self-checking” validation tools such
as residuals (difference between the measurements and model
predictions) that can be statistically tested for validity and used
by the processor to assure accurate performance.7 With this in
mind, we introduce two of the most popular model-based
approaches in the literature: model-based matched-field pro-
cessing8,9 (imaging) and model-based recursive (in-time or in-
space or both) processors (e.g., MBP or Kalman filters).7

Model-based matched-field imaging for nondestructive
evaluation

Typical image processing techniques in acoustics consist
of pre-processing the raw data to provide enhanced signals as
input to the image formation algorithm as well as post-pro-
cessing of the two-dimensional image to enhance, extract,
and classify certain features of high interest. In this article, we
concentrate primarily on the same theme that we have used
throughout, the development of processors that incorporate
more and more a priori information about the acoustics gen-
erating the data and its incorporation into a model-based
imaging algorithm. 

We saw in the previous example of a plane wave imping-
ing on an array, how modern spatial spectral estimators
(beamformers) can be used to estimate the wave’s spatial and
temporal spectral features. The model-based approach uses
all of the a priori information about the plane wave propaga-
tion and noise measurements to extract the parameters
directly solving the problem. The same idea can be extrapo-
lated to the imaging problem. We assume that we have an
array of sensors either physical or synthetically created, and
we have developed a sequence of measurements resulting by
exciting the medium under investigation. For instance, it can
be an active sonar system in the ocean or an ultrasonic scan-
ner in biomedical or nondestructive evaluation (NDE), or a
passive array listening to a surveillance volume for passing
airborne targets. 

Here we consider the acoustic application of a laser ultra-
sound experiment for the NDE of an aluminum part. Our
first approach is to apply the synthetic aperture focus tech-
nique (SAFT) to image the part under investigation.13,14 We

Fig. 5. Model-based matched-field processor for acoustical imaging applications. Raw array field measurements and back-
propagated model measurements are compared (decision function) creating a power image that is thresholded for detec-
tion and localization.
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assume that the flaws can be characterized by acoustic point
scatterers in the near-field. Therefore, spherical wave fronts
impinge on our measurement array emanating from these
flaws. The SAFT approach creates an image by assuming that
the flaw location is at the given pixel, calculates the associat-
ed propagation delays and attenuations assuming a homoge-
neous medium, beamforms the measured data based on these
assumptions and estimates the power in the beam at the
assumed location (pixel or point scatterer). This procedure is
repeated for each pixel until the observed power image is
formed. Of course, this methodology can also be applied to
image the results of time-reversal focusing and decomposi-
tion of the operator for localization purposes.15

Another more acoustics-oriented approach for imaging is
based on replacing the beamformer with a propagation model.
The same scheme (as above) applies, but the propagation model
generates (backpropagation) the equivalent signal at the array
and a criterion is created to “decide” whether a flaw is at a given
test location (pixel or point scatterer).7 The propagation model
can be as sophisticated as deemed necessary incorporating fea-
tures such as both compressional and shear waves, multipath,
dispersion, and noise. This model-based technique is called
matched-field imaging (MFI) and enables the acoustician to use
the a priori information available in a formal procedure to cre-
ate the image.16,17 MFI is illustrated in Fig. 5 where we observe
the measurements and propagation model generating the com-
ponents of a decision function used to “detect” or “localize” the
position of a flaw (or target).7 Note that in the figure the plots are
actual laser ultrasound array measurements. The object is a hole
(flaw) drilled into an aluminum plate and measured using a syn-
thetic aperture technique created for processing and detection.14

Consider a typical laser ultrasonic application where a NDE
is performed on a rectangular aluminum part with two flaws.
The SAFT and MFI images are shown in Fig. 6. We note that the
MFI approach incorporates both compressional and shear wave
fronts as well as the multipath caused by the part boundaries.
The results of estimating the power at each pixel is shown where
we see the high resolution and accurate results of the MFI com-
pared to those of the SAFT processor. 

Recursive (in-time) model-based processing for a towed
acoustic array

Consider the following application taken from ocean
acoustics to motivate the modern recursive model-based
approach. Suppose we have a plane wave signal characterizing
an acoustic source measured by a horizontally towed array. The
plane wave is at a 50 Hz temporal frequency and a bearing of 45o

impinging on a 2-element towed array at a 10 dB SNR with a tow
speed of 5 m/sec. We would like to solve the problem of extract-
ing the source bearing and temporal frequency parameters—the
critical information we seek. From the model-based perspective,
the bearing/frequency estimation or equivalently, localization
problem can be considered a problem of estimating a set of
parameters from noisy hydrophone measurements.18,19 

The classical approach to this problem is to assume that the
signal is separable in space and time and select a single sensor
channel to perform spectral analysis/peak detection on the time
series to estimate the temporal frequency parameter. The bear-
ing can then be estimated independently by performing spatial
spectral estimation (as before) or beamforming on the array
data. A beamformer can be considered a spatial spectral estima-
tor that is scanned over bearing angles indicating the true source

location at the bearing of maxi-
mum power. The result of apply-
ing this approach to our problem
is shown in Fig. 7a. The figure
illustrates the classical outputs of
both spectral estimators peaking
at the correct frequency and bear-
ing angle parameters. 

The MBP is implemented by
incorporating the plane wave
propagation, hydrophone array,
and noise models. However, the
temporal frequency and bearing
angle parameters are unknown
and must be estimated. The solu-
tion to this problem is obtained by
augmenting the unknown param-
eters into a MBP state-space
structure and solving the so-
called joint estimation problem.7

This is the parametrically adap-
tive form of the MBP used in
most ocean acoustic applica-
tions.18 Here the problem
becomes nonlinear due to both
the measurement model (plane
wave) and the augmentation. It is

Fig. 6. Acoustical imaging of laser ultrasound flaw detection for NDE of aluminum part: (a) SAFT imaging; (b) model-based
matched-field imaging; (c) thresholded SAFT image for flaw localization [(12.03 mm, 2.79 mm),(9.89 mm, 5.02 mm)]; (d)
thresholded model-based matched-field image for flaw localization [(11.99 mm, 2.94 mm), (9.98 mm, 5.03 mm)].
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more computationally intensive than the spectral estimators
used in the classical approach; however, the results are appealing
as shown in Fig. 7b. We see the bearing angle and temporal fre-
quency estimates as a function of time converging to the true
values of 50 Hz and 45o bearing angle. The MBP also produces
the “residual or innovations” sequence, (shown in the figure)
that is used in determining its overall performance for valida-
tion. In this case the sequence must be statistically zero-mean
and white (uncorrelated) for optimal performance.7

Thus, the classical approach simply performs spectral esti-
mation temporally and spatially (beamforming) to extract the
parameters from noisy data, while the model-based approach
embeds the unknown parameters into its propagation, measure-
ment, and noise models enabling a solution to the joint estima-
tion problem. The performance of the MBP is validated by ana-
lyzing the statistics of its innovations sequence. This completes
the application.

Step 5: Model-based processing
(distributed physical approach)

This step can be the most com-
plex depending on the embedded
model representation. Typically, the
phenomenology is represented by a
set of partial differential equations
characterizing the propagation medi-
um and a set of noisy measurement
equations that still can be character-
ized by a state-space representation in
some form or another. Whether the
application is based on time-invariant
statistics like most of the applications

we have discussed or time/space
varying (e.g., ocean) where we
construct the processors using
recursive-in-time or recursive-
in-space techniques or both to
capture the ever-changing medi-
um or motion of the acoustic
problem that must be solved. 

Model-based tomographic
imaging for biomedical
imaging

Tomographic imaging is
governed by partial differential
propagation equations evolving
from a full-field wave model to
generate its solutions.20,21 It can
be thought of as a methodology
of solving an inverse problem.
Consider the development of a
tomographic image of breast tis-
sue to determine if a cancerous
tumor is or is not present. This
technology is based on Fourier
imaging techniques and diffrac-
tion tomographic reconstruc-

tion of the tissue using multiple scans through the breast
(object). Fourier imaging essentially obtains projections in
object space using Fourier transforms (1 dimensional) to “fill
in” regions in the 2 dimensional (2D) Fourier space and is
based on the Fourier diffraction theorem equating a projection
(plane wave propagation) in object space to a region (arc) in
2D-Fourier space. Once the space is filled, a 2D inversion is
performed using the model to perform a backpropagation
similar to a numerical time-reversal to reconstruct the object
and create the image. This is similar to computer-aided tomo-
graphic (CAT) reconstruction employing x-rays using the
Fourier slice theorem along a line, but here the acoustic prop-
agation is modeled by the wave equation.20,21

The application of this model-based (distributed)
approach to the breast tissue is shown in Fig. 8.22 Here we
observe the usual ultrasonic reflection image (not tomogra-

Fig. 7. Plane wave impinging on a 2-element hydrophone array: Frequency and bearing estimation problem: (a) classical spec-
tral (temporal and spatial) estimation approach; (b) Model-based approach using parametrically adaptive (nonlinear)
processor to estimate bearing angle, temporal frequency and the corresponding residual or innovations sequence.18,19

Fig. 8. Ultrasonic diffraction tomography is a model-based method based on the wave equation propagation model and
backpropagation techniques to construct a meaningful reconstruction. The model-based tomographic reconstruction
shown on the far right image compares quite well to the usual ultrasonic scanner shown on the far left (reflection ultra-
sound) and the x-ray CAT scan (middle).
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phy) from a hospital scanner compared to an x-ray CAT
image and finally the reconstructed image of the model-
based processor using the embedded wave equation propaga-
tion model. The results demonstrate the advantage of such a
sophisticated approach—especially for this application. 

Summary
We expressed the basic notion that signal processing is

concerned with the extraction of useful information from
uncertain measurement data. From this perspective, process-
ing is an essential ingredient that the acoustician cannot
ignore and therefore must be included in a daily regimen for
problem solving. To explain the place that signal processing
occupies, we developed a conceptual signal processing
framework to demonstrate how signal processing techniques
“fit” into this plan. Using a “bottoms-up” perspective we illus-
trated conceptually the progression up the so-called signal
processing staircase (Fig. 1) to illustrate a variety of acousti-
cal processing problems. We have discussed some of the
modern techniques in acoustical signal processing employ-
ing the philosophy that this approach incorporates more and
more of the a priori acoustical information available into the
processing scheme that typically takes the form of a mathe-
matical model. The incorporation of these models into the
processor leads to the model-based approach or equivalently,
the physics-based approach to signal processing. We started
with a simple representation of the staircase showing that as
the models get more complex so does the processor using
some simple examples for motivation. We demonstrated
some acoustic applications in sonar and nondestructive eval-
uation and compared these results to the more classical
approaches. We concluded the discussion with a tomograph-
ic imaging technique demonstrating the evolution of model-
based approaches to complex acoustical problems. The
answer to the question of “science or science fiction” there-
fore lies in the hands of the acoustician who must be able to
sort through the processed results with the aid of statistical
testing to assure the validity of the findings.AT
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