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The Tuning Fork:  
An Amazing Acoustics Apparatus

Daniel A. Russell

It seems like such a simple device: a U-shaped piece of metal 
with a stem to hold it; a simple mechanical object that, when 
struck lightly, produces a single-frequency pure tone. And 
yet, this simple appearance is deceptive because a tuning 
fork exhibits several complicated vibroacoustic phenomena. 
A tuning fork vibrates with several symmetrical and asym-
metrical flexural bending modes; it exhibits the nonlinear 
phenomenon of integer harmonics for large-amplitude 
displacements; and the stem oscillates at the octave of the 
fundamental frequency of the tines even though the tines 
have no octave component. A tuning fork radiates sound as 
a linear quadrupole source, with a distinct transition from 
a complicated near-field to a simpler far-field radiation pat-
tern. This transition from near field to far field can be seen 
in the directivity patterns, time-averaged vector intensity, 
and the phase relationship between pressure and particle 
velocity. This article explores some of the amazing acoustics 
that this simple device can perform.

A Brief History of the Tuning Fork
The tuning fork was invented in 1711 by John Shore, the 
principal trumpeter for the royal court of England and 
a favorite of George Frederick Handel. Indeed, Handel 
wrote many of his more famous trumpet parts for 
Shore (Feldmann, 1997a). Unfortunately, Shore split his 
lip during a performance and was unable to continue 
performing on the trumpet afterward. So he turned 
his attention to his second instrument, the lute. Being 
unsatisfied with the pitch pipes commonly used to tune 
instruments at the time, Shore used his tuning fork (prob-
ably an adaptation of the two-pronged eating utensil) to 
tune his lute before performances, often quipping “I do 
not have about me a pitch-pipe, but I have what will do 
as well to tune by, a pitch-fork” (Miller, 1935; Bickerton 
and Barr, 1987).

It took more than a hundred years before Shore’s tuning 
fork became an accepted scientific instrument, but starting 
in the mid-1800s and through the early 1900s, tuning forks 

and Helmholtz resonators were two of the most impor-
tant items of equipment in an acoustics laboratory. In 1834, 
Johann Scheibler, a silk manufacturer without a scientific 
background, created a tonometer, a set of precisely tuned 
resonators (in this case tuning forks, although others used 
Helmholtz resonators) used to determine the frequency of 
another sound, essentially a mechanical frequency ana-
lyzer. Scheibler’s tonometer consisted of 56 tuning forks, 
spanning the octave from A3 220 Hz to A4 440 Hz in steps 
of 4 Hz (Helmholtz, 1885, p. 441); he achieved this accu-
racy by modifying each fork until it produced exactly 4 
beats per second with the preceding fork in the set. At the 
1876 Philadelphia Centennial Exposition, Rudolph Koenig, 
the premier manufacturer of acoustics apparatus during 
the second half of the nineteenth century, displayed his 
Grand Tonometer with 692 precision tuning forks ranging 
from 16 to 4,096 Hz, equivalent to the frequency range of 
the piano (Pantalony, 2009). Keonig’s Grand Tonometer 
was purchased in the 1880s by the United States Mili-
tary Academy and currently resides in the collection of 
the Smithsonian National Museum of American History 
(Washington, DC; see tinyurl.com/keonig). For his own 
personal use, Koenig made a set of 154 forks ranging from 
16 to 21,845.3 Hz; he achieved this decimal point preci-
sion at a frequency he couldn’t hear by using the method 
of beats as well as the new optical method developed by 
Lissajous in 1857 (Greenslade, 1992). Lissajous’ method of 
measuring frequencies involved the reflection of a narrow 
beam of light from mirrors attached to the tines of two 
massive tuning forks, oriented perpendicular to each other, 
resulting in the images that now bear his name (Guillemin, 
1877, p. 196, Fig. 135 is one of the earliest images of Lis-
sajous and his optical imaging tuning fork apparatus for 
creating these figures). 

From the beginning, it was observed that touching the 
stem of the fork to a surface would transmit the vibration 
of the fork to the surface, causing it to vibrate. In the mid-
1800s, Ernst Heinrich Weber and Heinrich Adolf Rinne 
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introduced tuning fork tests in which the stem of a 
vibrating tuning fork is touched to various places on a 
patient’s skull to measure bone conduction; these tests 
have since become standard tools for the clinical assess-
ment of hearing loss (Feldmann, 1997b,c). Similarly, in 
1903, Rydel and Seiffer introduced a tuning fork with 
a graduated scale at the tines that is currently used to 
measure nerve conduction in the hands and feet (Mar-
tina et al., 1998).

From an educational viewpoint, the tuning fork has 
long been an important apparatus for demonstrations 
and experiments in undergraduate physics courses. Lin-
coln (2013) lists several tuning fork activities, including 
using an adjustable strobe light to see the tines vibrating; 
using a microphone and an oscilloscope to observe the 
frequencies of a fork and the variation in intensity as the 
fork is rotated; using a fork with a resonator box (Bogacz 
and Pedziwaitr, 2015) to demonstrate sympathetic reso-
nance and beats; attaching a mirror to one of the tines to 
reproduce the original Lissajous figures; measuring the 
speed of sound with a fork and a cylindrical tube partly 
filled with water; and observing how the frequency of a 
fork depends on temperature.

Fork Frequencies, Tine Length, and  
Material Properties
The frequency (f) of a tuning fork depends on its material 
properties and dimensions according to

1)	(	

where L is the tine length, E and ρ are the Young’s modu-
lus of elasticity and density, respectively, and A is a factor 
determined by the cross-sectional shape and thickness of 
the tines (Rossing et al., 1992). For tuning forks made from 
the same material and having the same tine shape and thick-
ness, the frequency depends on the inverse square of the tine 
length. Figure 1, a and b, shows a set of forks with frequency 
ratios of an octave starting at 256 Hz (with an extra fork at 
426.6 Hz) and a set of tuning forks with frequencies corre-
sponding to the notes of a musical scale starting at “middle” 
C4 261.6 Hz, respectively. A plot of frequency versus tine 
length verifies that the frequency increases as the inverse 
square of the tine length (Figure 1c). 

Since the mid-1800s when tuning forks began to be used 
as precision acoustical measurement devices, it has been 
known that the frequency of a tuning fork also depends 
strongly on temperature (Miller, 1926), with the frequency 
of a steel fork decreasing by 0.01% for every 1°C increase 
in temperature (Greenslade, 1992). In fact, some of the 
precision forks manufactured by Koenig in the late 1880s 
were stamped with the specific temperature at which the 
frequency would be accurate (Pantalony, 2009). Undergrad-
uate student experiments report the frequency of a steel fork 
dropping by 1.0 Hz over a temperature increase of 55°C 

Figure 1. Sets of tuning forks of the same material and tine cross-section dimensions but of different tine lengths. a: Set of blue steel 
forks with octave frequency ratios starting at 256 Hz, with an extra fork at 426.6 Hz. b: Set of aluminum forks forming a musical 
scale starting on “middle” C4 261.6 Hz. c: Frequency versus tine length for the steel forks in a (blue squares) and the aluminum forks 
in b (red circles). Both dashed lines represent a power law of the form f ∝ L-2. 
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(Bates et al., 1999) and a drop of 70 Hz for an aluminum 
fork as the temperature increased by 280°C (Blodgett, 2001).

The dependence of frequency on the properties of the mate-
rial from which a tuning fork is made can be a useful means 
of giving students a tangible experience with the properties 
of various metals and other materials. Burleigh and Fuierer 
(2005) and Laughlin et al. (2008) manufactured different 
collections of 17 tuning forks with identical dimensions but 
made from a variety of metals, polymers, acrylics, and woods 
and used them with students in a materials course to explore 
how the frequency, duration, and amplitude of the tuning 
fork sound depends on material properties. The material 
from which a tuning fork is constructed is also important for 
noneducational applications; MacKechnie et al. (2013) found 
that a steel tuning fork was more likely to produce a negative 
test result than an aluminum fork when administering the 
Rinne test for clinical assessment of conductive hearing loss.

Flexural Bending Modes and  
Natural Frequencies
A tuning fork that is freely suspended (not held at the 
stem) will exhibit a number of flexural bending modes 
similar to those of a free-free bar. Figure 2, a and b, 
shows the first two out-of-plane flexural bending modes 
of a free tuning fork, and Figure 2, c and d, shows the 
first two in-plane bending modes. Because the fork does 
not have a uniform cross section along its length, the 
displacement amplitudes and the node positions are not 
symmetrical about the midpoint of the fork, something 
that is similar to the bending modes of a nonuniform 
baseball bat (Russell, 2017). However, these free-free 
mode shapes are not typically observed when the fork is 
held at the stem. Instead, the normally observed vibra-
tional mode shapes, the shapes that give rise to the sound 
of the fork, are symmetrical modes in which the tines 
move in opposite directions (Rossing et al., 1992), as 
shown in Figure 2, e and f. 

When vibrating in the fundamental mode, the tines of a 
handheld fork flex in opposite directions, like a cantilever 
beam. The second mode has a node roughly one-fourth of 
the tine length from the free end. An impact at this loca-
tion will excite the fundamental but not the second mode; 
this is where to strike the fork to produce a pure tone. A 
fork should be impacted with a soft rubber mallet or struck 
against a relatively soft body part, like the knee or the pisi-
form bone at the base of the palm opposite the thumb 
(Watson, 2011). A fork should never be struck against 
a hard tabletop or hit with a metal object; doing so will 
excite other vibrational modes besides the fundamental 
and it could possibly dent the fork, changing its frequency.

The Frequencies of the Fundamental and 
the “Clang” Mode
When a tuning fork is struck softly, the resulting sound is a 
pure tone at the frequency of the fundamental symmetrical 
mode of the tines, as shown in Figure 2e. The spectrum in 
Figure 3a is for a soft impact on the tines of a 432-Hz tuning 
fork and shows a single, narrow peak at 432 Hz, 60 dB above 
the noise floor. Figure 3b shows that when this same 432-Hz 
fork is given a slightly harder impact at the tip of the tine, 
both the fundamental and also the second mode are excited. 
The second mode, called the “clang” mode, has a frequency 
of 2,605 Hz for this fork, which is slightly more than six 
times the frequency of the fundamental. The overtones of a 
tuning fork are not harmonics.

Figure 2. Flexural bending modes for a tuning fork. Red, 
antinodes with maximum amplitude; dark blue, nodes with 
zero amplitude. Top: out-of-plane bending modes for a 430-
Hz tuning fork. a: first bending mode at 1372 Hz. b: Second 
bending mode at 3,731 Hz. Center: in-plane bending modes 
for a 430-Hz tuning fork. c: First bending mode at 1,974 Hz. 
d: Second bending mode at 4,285 Hz. Bottom: symmetrical 
in-plane modes of a 430-Hz tuning fork. e: Fundamental mode 
at 430 Hz. f: “Clang” mode at 2,612 Hz. 
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What boundary conditions would be appropriate for mod-
eling the vibrational behavior of a tuning fork? Chladni 
(1802) approached the tuning fork by starting with a 
straight bar, free at both ends, and gradually bending it 
into a U-shape with a stem at the bottom of the U. The pop-
ular acoustics textbook by Kinsler et al. (2000, pp. 85-86) 
states that “The free-free bar may be used qualitatively to 
describe a tuning-fork. This is basically a U-shaped bar 
with a stem attached to the center.” A different bound-
ary condition was considered by Rayleigh (1894), who 
treated the tines of a tuning fork as being better modeled 
as a clamped-free bar. Who is correct? Well, a theoretical 
analysis of the boundary conditions for a beam undergo-
ing flexural bending vibrations indicates that the frequency 
of the second mode of a free-free bar is 2.78 times the 
fundamental, whereas the frequency of the second mode 
of a fixed-free cantilever bar is 6.26 times the fundamental. 
The measured frequency of the clang mode, as shown in 
Figure 3b, suggests the clamped-free model is better.

The presence of the clang mode could pose problems 
for the clinical use of a tuning fork when assessing hear-
ing health. Tuning forks with frequencies of 256 Hz and 
512 Hz are frequently used for Rinne and Weber tests, 
and the corresponding clang modes near 1,600 Hz and 
3,200 Hz, respectively, fall within the range of frequen-
cies where human hearing is most sensitive. Thus care 
must be taken to strike the fork without exciting the 
clang mode to prevent misleading results during a clini-
cal examination (Stevens and Pfannenstiel, 2015).

Nonlinear Generation of Integer Harmonics
When struck softly with a rubber mallet, a tuning fork 
produces a pure tone devoid of integer harmonics 

common to most musical instruments. However, an 
interesting result occurs when the fork is struck vigor-
ously. If the tines are set into motion with a sufficiently 
large amplitude, the elastic restoring forces become non-
linear and the resulting radiated sound contains clearly 
audible integer multiples of the fundamental (Rossing 
et al., 1992). Helmholtz (1885, pp. 158-159) reportedly 
identified integer harmonics up to the sixth order for a 
large fork. The spectrum in Figure 3c shows the result 
of striking the fork hard enough to produce an audible 

“buzzing” and the amplitude of displacement at the end 
of the tines was visibly observed to be a couple of mil-
limeters. This spectrum shows nine integer harmonics of 
the fundamental in addition to the clang tone. 

Octave at the Stem
A more surprising observation is made when the stem of 
a vibrating fork is pressed against a sounding board or 
tabletop. The stem vibrates with a much smaller amplitude 
than the tines, but the tabletop is a much larger surface 
area so that the radiated sound, when a fork is touched to 
a surface, is considerably louder than the sound of the fork 
in air. Touching the stem to a surface produces an audible 
octave (exactly twice the fundamental frequency), even 
though the tines do not vibrate at the octave; the ampli-
tude of the octave is often significantly louder than the 
fundamental (Rossing et al., 1992). A video demonstration 
of this phenomenon is found at y2u.be/NVUCf8mB1Wg.

The octave at the stem was noticed by Helmholtz (1855) 
and explored by Rayleigh (1899, 1912), who found that 
bending the fork tines inward could reduce the strength 
of the octave. However, an explanation of why only the 
octave and fundamental appear at the stem was not pro-

Figure 3. Frequency spectra resulting from striking a fork: a soft blow (a); a harder blow at the tip of the tines (b); a very hard blow 
(c). See text for explanation.

http://y2u.be/NVUCf8mB1Wg


52 Acoustics Today • Summer 2020

vided until much more recently. Boocock and Maunder 
(1969) developed a theoretical analysis, supported by 
experimental results, indicating that the presence of the 
octave at the stem is due to longitudinal inertia forces. 
They were able to explain Rayleigh’s (1912) observation 
that bending the tines (thus offsetting the longitudinal 
imbalance) reduces the strength of the octave component. 
Sönnerlind (2018) developed a detailed computer model 
of a tuning fork and found that the octave motion in the 
stem is likely due to a nonlinear relationship between 
the vertical movement of the center of mass of the fork 
and the displacement of the tines. His model shows that 
a double frequency (octave) occurs because the center of 
mass of the fork reaches its minimum position twice per 
cycle, when the fork tines bend both inward and outward. 
Sönnerlind’s model also indicates that the octave from 
the stem is more prominent for forks with longer tines 
and forks with tines having a square cross section (rather 
than a circular cross section). 

The presence of the octave at the stem could affect the 
results of the Rinne and Weber hearing tests and the 
Rydel-Seiffer vibration sensitivity test because the stem 
is placed in contact with the skull, hands, or feet. This 
is why forks for assessing conduction hearing loss and 
nerve response to vibration are often fitted with weights 
at the tip of the tines because this reduces the presence 
of the octave at the stem.

The presence of an octave at the stem also has implica-
tions for piano tuners; touching a 440-Hz fork to the piano 
soundboard will produce a 440-Hz tone along with a stron-
ger 880-Hz octave, and the 880-Hz octave from the tuning 
fork stem will beat with the A 880-Hz piano string that 
is tuned slightly sharp due to the intrinsic inharmonicity 
in piano strings. This very problem was posed as a ques-
tion to me during my graduate school days, and answering 
the question was the beginning of my fascination with the 
acoustics of tuning forks (Rossing et al., 1992). 

Directivity Patterns, Quadrupole Sources, 
and Intensity Maps
When a tuning fork vibrates in its fundamental mode, 
the tines oscillate in opposite directions, with each tine 
acting as a dipole source such that the two oppositely 
phased dipoles combine to form a linear quadrupole 
source (Rossing et al., 1992). The linear quadrupole is 
an interesting sound source because the sound field at 

near and far distances from the source exhibits distinct 
differences in directivity patterns, vector intensity maps, 
and the phase between pressure and particle velocity. 

Quadrupole and Dipole Directivity Patterns
The nature of the quadrupole radiation may be demon-
strated by rotating a tuning fork about its long axis while 
holding it close to the ear or near to the opening of a 
quarter-wavelength resonator tuned to the fork funda-
mental (Helmholtz, 1885, p. 161). During one complete 
rotation, there will be four positions where the resulting 
sound is loud, alternating with four regions where the 
sound is very quiet; the sound will be loud when the 
tines are in-line with the ear and also when the tines 
are perpendicular. However, if the fork is held at arm’s 
length from the ear and rotated, only two loud regions 
will be heard, when the tines are in-line with the ear, and 
the previously loud regions when the tines are perpen-
dicular to the ear will now be quiet. This variation in the 
loudness means that care must be taken regarding the 
orientation of the tuning fork tines with respect to the 
external auditory canal during the air conduction por-
tion of the Rinne test (Butskiy et al., 2016). 

Figure 4, a-c, compares the measured directivity patterns 
at increasing distances from a 426-Hz tuning fork with 
theoretical predictions for a linear quadrupole source. 
Measured sound pressure levels around a 426-Hz tuning 
fork vibrating in its fundamental mode agree very nicely 
with theory at all distances (Russell, 2000; Froehle and 
Persson, 2014). These data explain why one hears four 
loud regions when a fork is rotated close to the ear but 
only two loud regions when the fork is rotated at arm’s 
length. It also explains why, if you listen very carefully, 
the sound is noticeably louder (about 5 dB) when the 
tines are aligned with the ear compared with when they 
are perpendicular.

If a fork is rigidly clamped at the stem, it may be forced 
into several other natural modes of vibration that radiate 
sound as a dipole source or as a lateral quadrupole source. 
Figure 4, d-f, shows measured directivity patterns for a 
426-Hz tuning fork that was clamped at the stem and 
driven at an in-plane dipole mode at 257 Hz, an out-of-
plane dipole mode at 344 Hz, and a lateral quadrupole 
mode at 483 Hz. The measured data agree well with the 
theoretical predictions for dipole and lateral quadrupole 
sources (Russell, 2000). 

ACOUSTICS OF TUNING FORKS
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Acoustic Intensity Maps and Energy Flow 
Around a Fork
The transition from near-field to far-field radiation for 
a linear quadrupole source may be explored further by 
looking at the time-averaged vector intensity. The time-
averaged acoustic intensity represents the net energy 
flow; it is a vector quantity with both magnitude and 
direction. In the far field from a simple source, the vector 
intensity points radially away from the source, indicating 
that the source is producing waves that carry energy away 
from the source in a roughly omnidirectional manner. 
However, the near field of a source may consist of regions 
where the energy swirls around, with no net outward flow. 

Figure 5 shows a theoretical prediction of the time-aver-
aged acoustic intensity vectors in two quadrants of the 
horizontal plane surrounding a tuning fork, modeled as 
a linear quadrupole source. The amplitude of the inten-
sity for a quadrupole source falls off as the inverse of the 
fourth power of distance, so the direction of flow has 
been normalized to unit length to make it visible and to 
emphasize the directional property of the intensity. In 
the far field, the direction of the intensity vectors indi-
cate that sound energy is propagating radially outward, 

away from the fork. The near field shows a much more 
interesting feature. Perpendicular to the fork tines (the 
vertical axis of the plot), energy is radiated away from the 
fork at all distances. But, in the direction parallel to the 
tines (the horizontal axis of the plot), energy is actually 
directed inward toward the fork in the near field. At a 
distance approximately 0.225 times the wavelength, the 
intensity drops to zero before changing direction and 
pointing outward for farther distances (Sillitto, 1966). 
Although the acoustic intensity vanishes at this location, 
the pressure does not drop to zero, and sound will still 
be heard without any change in loudness at this location. 
This theoretical prediction of the “swirling” of the energy 
in the near field of the fork has been experimentally veri-
fied through measurements of the time-averaged vector 
intensity using a two-microphone intensity probe; the 
measured data confirm the theoretical predictions (Rus-
sell et al., 2013). 

Phase Relationship Between Pressure and 
Particle Velocity
An additional aspect of the transition between the near 
field and far field around a tuning fork is the relationship 
of the phase between pressure and particle velocity. In 
the far field of a spherically symmetrical source, the pres-
sure and particle velocity are in phase with each other; 
both reach maximum and minimum values at the same 
time. In the near field, however, the pressure and par-
ticle velocity are 90° out of phase; when one quantity is 
at a maximum or minimum, the other quantity is zero 

Figure 4. Sound pressure level directivity patterns around a 
tuning fork. Solid circles, measurements; solid curves, theory 
for a linear quadrupole. Red arrows, relative direction of 
tine motion. Top: data for a 426-Hz fork vibrating in its 
fundamental mode at distances of 5 cm (a), 20 cm (b), and 
80 cm (c). Bottom: data for the same 426-Hz fork driven 
into vibration as an in-plane dipole source at 275 Hz (d), 
an out-of-plane dipole source at 344 Hz (e), and a lateral 
quadrupole source at 483 Hz (f). Adapted from Russell, 2000, 
with permission.

Figure 5. Time-averaged acoustic intensity vectors in two 
quadrants around a tuning fork. The two black rectangles 
in the center represent the tines and the arrows indicate the 
direction of flow of acoustic energy. See text for explanation. 
Adapted from Russell et al., 2013, with permission.
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and the quantities are said to be in quadrature. Figure 6 
shows measurements of the pressure and particle veloci-
ties made with a matchstick-sized Microflown transducer 

near a large 426-Hz fork. In the near field, at a distance of 
7 cm from the tines, the pressure and particle velocity are 
seen to be nearly 90° out of phase to each other. But at a 
larger distance of 80 cm, in the far field, the pressure and 
particle velocity are nearly in phase. The quadrature phase 
relationship between pressure and particle velocity is a 
topic discussed frequently in upper level undergraduate 
and graduate acoustics courses covering spherical waves. 
However, even though I had known this for many years, 
as both a student and a teacher, the first time I obtained 
the experimental data in Figure 6 was an exciting moment. 

The Tuning Fork on the Gold Medal of 
the Acoustical Society of America
The humble tuning fork is a simple mechanical device 
that is capable of demonstrating a wide variety of com-
plex vibroacoustic phenomena. Perhaps it is no surprise 
that this marvelous acoustical apparatus is prominently 
featured on the Acoustical Society of America (ASA) 
Gold Medal (Figure 7), the most prestigious recogni-
tion awarded by the ASA. It is interesting to note that 
the fork depicted on the medal appears to be vibrating 
with a sufficiently large amplitude so as to produce non-
linearly generated integer harmonics. However, whereas 
the shape of the fork looks similar to those made by 
Koenig, the radiated wave fronts are far too close together 
(relative to the fork dimensions); this fork must have a 
fundamental frequency much higher than the 21,845-Hz 
fork in Koenig’s personal collection.
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