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Text to speech (TTS) has become so much a part of our 
everyday lives thanks to Alexa, Google, Siri, and many 
others that we have come to know (if not always love) 
that it is difficult to recall a time when it was not so. Syn-
thetic voices like those for Siri and others fill multiple 
roles today. They deliver announcements of important 
information over public address systems in noisy places 
like airports where high intelligibility of the speech in 
noise is crucial to ensure the information they carry is 
heard correctly. A synthetic voice may be the first entity 
a customer interacts with when contacting a company 
and it is important for the voice, as a representative of the 
company, to present a natural and pleasing voice quality 
that is representative of the company’s image. Synthetic 
voices serve as the only voice for individuals whose own 
voice is lost due to injury or a progressive neurological 
disease like amyotrophic lateral sclerosis (ALS; also called 
Lou Gehrig’s disease or motor neuron disease [MND]) or 
who have a congenital dysarthria due to a condition such 
as cerebral palsy. And TTS voices allow blind or nonliter-
ate users to read content from news stories, books, and 
computer screens while giving busy people an opportu-
nity to “read” email even when driving their car.

A Framework and Baseline for Text  
to Speech
These current use cases for TTS voices provide insight 
into the successes of the underlying technology and 
also highlight areas where work remains. The need for 
intelligibility, naturalness, and ability to convey an indi-
vidual’s vocal identity are obvious from these examples. 
Less obvious but no less important is the expressiveness 
of the synthetic speech: the ability to express through 
intonation or “tone of voice” (Pullin and Hennig, 2015) 
the intent underlying the words of an utterance. 

In this article, I trace how we arrived at the current state of 
the science for TTS, showing how the technology improved 

with the adoption of newer approaches and improved 
numerical techniques. A natural start is with the work of 
Klatt (1980) who provided Fortran software for implement-
ing a cascade/parallel formant synthesizer. Klatt (1987) 
provided a history of TTS conversion, which was remark-
able for the inclusion of a collection of audio examples for 
many of the synthesizers he discussed (see Ramsay, 2019, 
for an interesting review of early mechanical synthesizers). 

Crucially, the period around the publication of these 
two articles by Klatt (1980, 1987) marked an important 
era in the TTS field. From a purely commercial perspec-
tive, it was arguably during this time that TTS systems 
became commercially mainstream, largely through 
improvements in the intelligibility of the speech that 
they generated.

Second, during this period, TTS technology started to 
be adopted by nonvocal persons to enhance their ability 
to communicate with others. One of Klatt’s visions for 
Digital Equipment Corporation’s DECtalk system, which 
emerged directly from his work at MIT, Cambridge, 
Massachusetts, was its application in augmentative and 
alternative communication (AAC) devices for commu-
nication by individuals who are nonvocal. Until that 
time, augmented communicators depended mainly 
on mechanical communication boards that required 
communicants to point to words or letters to express 
themselves. Recently, the field has come to refer to these 
speech-enabled communication devices as speech-gen-
erating devices (SGDs), the term I use in this article.

In this article, I present a framework that captures the struc-
ture and function of the TTS advances. Throughout, a goal is 
to focus on the implications for SGD users’ communication.

Figure 1 provides a unified framework for discussing 
modern TTS systems. Each block or component in the 
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figure represents a logical element of the TTS process as it 
is usually conceived. I start with a description of a generic 
rule-based formant synthesizer like DECtalk (Figure 1, 
green). I focus on this pipeline to set the baseline to show 
the types of changes that have been made over time to 
improve the technology. 

Formant Synthesis from Rules
Formant synthesis systems (and virtually all other TTS 
systems I discuss) require some form of initial text 
processing (Figure 1, green). Typically, this involves 
tokenizing the input text stream into distinct words or 
tokens and text normalization to convert nonword tokens 
such as numbers and abbreviations into the words one 
would speak when reading the tokens aloud. Thus, con-
sider the text input “Dr. Smith lives at 1702 S. Park Drive 
and can be reached by phone at 555-456-7890.” The first 
instance of “Dr.” must be converted to the word “doctor,” 
while the second instance should be replaced with the 
word “drive.” Given that 1702 S. Park Drive appears to 
be an address, a likely rendering would be “seventeen oh 
two south park drive.” The final phone number would be 
replaced with the words “five five five, four five six, seven 
eight nine oh,” with commas or other textual markers to 
indicate the appropriate phrasing for a phone number. Of 
course, the challenge for text normalization is to derive 
enough information of the textual input to make accurate 
guesses about things like phone numbers or addresses.

A related problem for text normalization is disambigu-
ating the pronunciation of homophonous words. Often, 
context can provide helpful clues; if someone is “playing a 
bass,” they are more likely to be a musician than an actor 

impersonating a fish. But sometimes disambiguation 
requires much deeper semantic/pragmatic knowledge 
that can easily be guessed from context alone. Is a shiny 
white bow a holiday decoration or the front of a boat?

The tokenized and normalized input text, along with any 
additional meta information related to prosodic proper-
ties (the intonation and timing properties) derived from 
the initial text processing, is next passed to the text to 
phonetics component (Figure 1, green), which produces 
a symbolic phonetic representation. In the original 
rule-based formant synthesis systems like DECtalk, this 
representation consisted of little more than a string of 
phoneme symbols along with some formal boundary 
and intonation symbols. Boundary symbols indicate the 
degree of acoustic/phonetic separation between two adja-
cent phonemes. For example, the boundaries between 
words are often marked by distinct acoustic features; con-
sider the distinction between “gray day” and “grade A.” 
Moreover, the boundaries between phrases of different 
types are also marked by phonetic duration differences, 
pauses, and intonational features such as the rising pitch 
at the end of many questions or the falling pitch at the 
end of a declarative sentence.

The intonation symbols express the relative locations and 
types of pitch accents or “tones” relative to the phonetic 
symbols. Over time, a standardized system has devel-
oped based on the concepts of “tones and break indices” 
(ToBI; e.g., Silverman et al., 1992) that describes the 
intonational structure of English and other languages in 
terms of a discrete set of tones corresponding to a rela-
tive maximum or minimum in fundamental frequency 

Figure 1. Unified schematic covering current text to speech (TTS) system designs. Colors highlight components for different types 
of TTS systems. Green components are shared by many types of TTS systems. See Figure 2, green and blue, and 5, green and 
yellow, for specific pathways.
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(perceived as voice pitch) that aligns to a specific syl-
lable within an utterance. Similarly, break indices are 
single-digit integers that indicate the relative separation 
between two elements in an utterance. ToBI-like symbol 
sets are often used for the boundary and intonation sym-
bols in current TTS systems.

Next, the phonetics to parameters components (Figure 
1, green) maps the symbolic phonetic description of the 
input text to a numerical representation suitable for 
input to a vocoder or parametric synthesizer to gener-
ate a speech waveform from the numerical parameter 
values. Whereas the phonetic symbols imply a sequence 
of related acoustic events, there are no time units at the 
symbolic level. In a rule-based formant synthesizer like 
DECtalk, the phonetics to parameters component is 
responsible for laying out the parameters as a dynamic 
time-varying sequence with defined temporal coor-
dinates. Typically, parameters are updated every few 
milliseconds at a constant prespecified rate, for example, 
every five milliseconds. 

Finally, the parameters to sound component (Figure 1, 
green), often referred to as a “vocoder,” accepts the para-
metric representation of speech and generates audio 
output. In many parametric systems, a source/filter model 
of speech is adopted wherein a source signal consisting of 
either a periodic impulse train or white noise is passed 
through a digital filter representing the human vocal tract.

Application of Text to Speech to 
Speech-Generating Devices 
Formant-based TTS systems were intelligible enough 
to become widely adopted by assisted communicators 

in the late 1980s and 1990s, with DECtalk being the 
most commonly used system in the SGDs of the time 
(see https://bit.ly/31E9A54). Perfect Paul, which was 
demonstrably the most intelligible of the DECtalk voices 
(Green et al., 1986), was the voice of choice for many 
AAC users of the time. Even women would often choose 
to use the male Perfect Paul voice because it was more 
easily understood by others. Imagine attending a meeting 
in a conference room with multiple people using SGDs 
all tuned to Perfect Paul and not being entirely certain 
whose device had just emitted an important comment! So, 
although many nonvocal persons now had a voice, they 
did not have their own voice for communication.

In addition to not providing every AAC user with a unique 
voice, the formant synthesis systems of the time did not 
sound particularly human. As I discuss in Diphone Syn-
thesis, a technique called diphone synthesis emerged as 
one possible way to generate more human-sounding and 
identity-bearing synthetic speech. But neither formant 
synthesis nor diphone synthesis addressed another short-
coming, a lack of expressiveness. Attempts were made to 
create a more expressive output for DECtalk by modifying 
the synthesis parameters to convey emotional states such 
as boredom or sadness (Murray and Arnott, 1993), but 
they were not widely implemented.

Diphone Synthesis
Diphone systems represented an important bifurcation 
in TTS technology: the distinction between knowledge-
based systems and data-based systems. This distinction 
can also be described as between rule-based systems 
where a human expert must design the rules and corpus-
based systems where a corpus of speech data provides the 

Figure 2. Component pipeline for diphone and other concatenative synthesis methods from Figure 1.

https://bit.ly/31E9A54


	 Spring 2022 • Acoustics Today 17

information that would otherwise need to be expanded 
from rules. Or, as seen in Statistical Parametric Speech 
Synthesis, the corpus can be used to automatically dis-
cover the rules through machine-learning algorithms 
so that no expert is needed. Thus, the rules needed for 
the phonetics to parameters component of a formant 
synthesis system required expert knowledge of acoustic 
phonetics and a lot of hard work. However, corpus-based 
systems were able to replace much of that work by simply 
storing the data that would otherwise need to be devel-
oped from rules.

As illustrated in Figure 2, diphone synthesis (and related 
“concatenative” methods) follows a slightly different path 
within our overall TTS model. 

A diphone is the region of speech spanning roughly the 
middle of one phoneme to the middle of the next pho-
neme. Figure 3 illustrates this using the word “bob.” The 
initial and final /b/ segments are relatively stable as is the 
/a/ vowel near its center. However, the acoustic structure 
changes rapidly around the borders between the con-
sonants and the vowel. As long as the phoneme centers 
are reasonably similar across different phonetic contexts 
(they really are not, but we are assuming that they are close 
enough!), then cutting speech up into diphone-sized units 
ought to allow one to concatenate the diphones in novel 
ways to produce nearly any utterance. For example, take 
the [ba] from [bab] and the [at] from “cot” [kat] to create 

“bought” [bat]. This was the insight that led Dixon and 
Maxey (1968) to develop a formant diphone synthesizer 
(see #18 at https://bit.ly/3qxs3uL) that used stored formant 
synthesis parameters rather that a rule system to generate 
the parameters prior to synthesis.

Formant synthesis parameters are an interesting choice 
for the diphone storage because they have several useful 
properties. (1) They do not require a large amount of 
storage (a factor that was especially important in 1968!). 
(2) They are orthogonal, that is, it is possible to change 
any one parameter value without impacting the values 
of other parameters. (3) Interpolation between values for 
any parameter will yield another valid parameter value. 

However, formant synthesis parameter values have not 
been the most common format for storing diphone 
units. More commonly, diphones have been stored as 
linear predictive coding (LPC) coefficients (e.g., see #34 

at https://bit.ly/30n0V6V) or as waveform data stored 
in a format amenable to the fundamental frequency 
(F0) and duration modification using an algorithm like 
Pitch Synchronous OverLap Add (PSOLA; Moulines and 
Charpentier, 1990).

As is often true with speech processing, the most natural 
sounding of these formats in terms of voice quality would 
be waveform data because that is the least processed. LPC 
coding preserves much of the speaker identity informa-
tion, but some voice quality may be lost in processing. 
Formant synthesis generally produces the least natural-
sounding audio. Unfortunately, waveform data are the 
least compact storage format and also the most difficult 
to work with in that they afford little opportunity to 
adjust for discontinuities at diphone boundaries.

The phonetics to stored units (Figure 2, blue) is the path 
taken from the text to phonetics component for diphone 
synthesis. There are a relatively small number of diphones 
for any language. For example, Dixon and Maxey (1968) 
based their inventory on a total of 41 phonemes, so a 
theoretical maximum of 412 = 1,681 possible diphones. 
Consequently, the conversion from phonetics to stored 
units amounts to simply looking up the needed sequence 
of diphone units.

The selected diphone units can then be passed to the concat-
enate units (Figure 2, blue) component that concatenates 

Figure 3. Illustration of phonemes versus diphones. Top, 
spectrogram of the word bob. Dark bands, regions of 
high energy, corresponding to formants. Middle, acoustic 
waveform. Bar below waveform, phoneme locations ([b], [a], 
and [b]). Bottom bar, locations of the two diphone regions 
([ba] and [ab]).

https://bit.ly/3qxs3uL
https://bit.ly/30n0V6V
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the selected units to form the desired output utterance. If 
the storage format permits, there may be additional adjust-
ments to the units during the concatenating process. This 
could include adjustments such as smoothing potential 
discontinuities across diphone boundaries, adjusting 
diphone duration per a timing model, or even adjusting 
the F0 per an intonation model. Once the diphones have 
been assembled and concatenated to form an utterance, 
additional processing, if any, is applied to map from the 
diphone storage format to a digital audio waveform.

Diphone synthesis held one particularly intriguing possibil-
ity for SGD users, the ability to capture an individual’s vocal 
identity. Because only a small amount of recorded speech 
is needed to create a diphone inventory, it would be pos-
sible to inexpensively mass produce unique diphone voices 
as long as the process of selecting diphones from record-
ings could be automated. People using SGDs could have a 
unique personal voice by selecting a suitable voice donor 
to do the recording. Moreover, people diagnosed with a 
condition such as ALS that threatens the loss of their voice 
could do the recording themselves and thus “bank” their 
voice for later use as a synthetic voice in an AAC device. In 
the mid-1990s, my laboratory at the Nemours Children’s 
Hospital, Delaware, began experimenting with an extension 
of diphone synthesis (e.g., Bunnell et al., 1998) that would 
allow ALS patients to bank their voice in this way, a process 
referred to as “voice banking.”

Diphone TTS voices, although a promising technology, 
did not generally gain much traction among AAC device 
manufacturers or SGD users. The small memory footprint 
for rule-based formant synthesis was certainly an impor-
tant factor in favor of the formant-based TTS voices for 
AAC manufacturers. Furthermore, diphone TTS voices 
did capture the vocal identity of the person who recorded 
the diphone inventory but did not permit expressiveness, 
particularly for systems that used waveform concatenation, 
and despite capturing voice quality well, diphone synthesis 
tended not to flow in a natural manner. Moreover, many 
of the inexpensive diphone TTS systems available in the 
1980s and later were less pleasing to listen to than the DEC-
talk voices that were provided with most AAC devices (e.g., 
see #29 at https://bit.ly/30n0V6V). That changed, how-
ever, with the emergence of unit selection TTS systems 
in the 1990s.

Unit Selection Text-to-Speech Voices
One of the greatest difficulties with diphone synthesis 
was the impossibility of selecting a collection of diphones 
that did not suffer from sometimes jarring discontinui-
ties at concatenation boundaries. This was less of an issue 
for diphones stored, as per Dixon and Maxey (1968), in a 
format that was amenable to substantial adjustments to 
smooth over or entirely eliminate disjunction by inter-
polating smoother parameter trajectories at segment 
boundaries. However, the highest voice quality obtainable 
from diphone synthesis was for diphones stored as wave-
form data or equivalently prewindowed PSOLA epochs. 
Unfortunately, with waveform concatenation and other 
issues, notably jarring differences in spectral features, F0, 
and amplitude at diphone boundaries were common.

These issues with waveform concatenation were largely 
addressed by an extended approach called “unit selection” 
(e.g., Zen et al., 2009) wherein a large amount of speech 
from a single individual is recorded and segmented into 
units that could be diphone size or smaller. This approach 
is illustrated in Figure 4 using the word two as the target 
utterance and assuming each unit is roughly half of a 
phoneme. The units are stored along with additional 
features describing the linguistic details of the phoneme 
or waveform region from which they were drawn, such 
as the type of word (function vs. content word), syl-
lable stress, syllable location, phrase location, presence 
and type of pitch accent on the associated syllable, and 
boundary level for the associated syllable. Because a unit 
selection database may contain a large number of can-
didates for each possible unit, there is a much greater 
chance of finding one or more units that exactly or nearly 
match the intended output context along all of the coded 
linguistic dimensions. Moreover, in the process of select-
ing units for concatenation, it is possible to select the 
specific candidates that will also minimize spectral dis-
continuities or sudden jumps in F0 or other factors that 
cannot be indexed as specific linguistic features.

Unit selection voices came to dominate the commercial 
TTS voice market in the late 1990s and 2000s because 
they are much more natural-sounding and intelligible 
than other commercially available TTS voices. Sometime 
in the 2000s, most SGD manufacturers included at least 
a few unit selection voices in their products. Moreover, 
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most SGDs transitioned from proprietary hardware to 
being software running on embedded Microsoft Win-
dows systems. Because of this, most SGDs were also able 
to include voices provided by Microsoft or third-party 
voices written to published Microsoft standards. 

My laboratory moved to a full unit selection system for 
voice bankers based on 1,600 utterances of various lengths 
and composition, comprising roughly one hour of run-
ning speech at normal speaking rates. With funding from 
the National Institute for Disability and Rehabilitation 
Research and later from the National Institutes of Health 
(NIH), I was able to offer a free experimental voice-bank-
ing service and provided a small number of voices to 
participants throughout most of the 2000s. Voices built in 
the laboratory could be incorporated with any Windows-
based SGD. I formally began referring to the service as 
the ModelTalker project (Bunnell et al., 2005). Although 
the ModelTalker service was the first such service regu-
larly used by ALS patients for voice banking, there are 
now excellent voice-banking services offered by a vari-
ety of commercial TTS companies, notably Acapela.com 
and Cereproc.com, who also offer voices for languages 
other than English. I have live example voices on the  
ModelTalker.org website (see https://bit.ly/3C57WpT; it 
might be slow when the website is busy).

By the late 2000s, unit selection was considered the best 
available TTS technology. The major voices for services 

like Siri and Alexa were built on unit selection technol-
ogy as were enterprise-grade voices for large business call 
centers. However, the amount of recorded speech from 
voice talent needed to create the highest quality general-
use voices exceeded tens of hours of running speech and 
many more hours of studio time. Even then, it is fairly 
easy to find examples of words that did not sound entirely 
natural within some specific context. There is no way to 
anticipate and record all of the possible acoustic phonetic 
variation within any language, even if factors like vocal 
effort, voice quality (breathy, hoarse, modal, fry, pressed), 
speaking rate, articulatory precision, and so forth are 
held constant. Moreover, for a truly natural-sounding 
and expressive TTS voice, one would not want to hold 
those factors constant!

The massive increase in memory density and decrease 
in memory cost over several decades made it feasible 
to work with unit selection voices despite their rapidly 
growing data footprint. But no amount of memory is 
really able to overcome the combinatorial ceiling that 
unit selection voices ultimately must hit. This prompted 
much interest in the possibility of returning to paramet-
ric synthesis, but rather than parametric synthesis with 
expertly crafted rules to describe dynamic parameter 
variation, statistical machine-learning techniques could 
be used to automatically capture the temporal patterning 
in synthesis parameters. The improvements brought by 
this effort to synthesize speech are now discussed.

Figure 4. Unit selection search process for the word “two.” Two phonemes are required: /t/ (HT) and /u/ (UW) along with initial 
and final silence pseudo phonemes (0B and 0E). Multiple instances of each phoneme (numbers in boxes) are selected, each of 
which has two subphonemic “units” (e.g., HTL and HTR). Each unit receives a target cost based on linguistic appropriateness and 
joined costs are assigned between units based on the acoustic continuity (gray arrows). The search locates the specific candidate 
units that minimize the combined target and joined costs over the utterance (paths shown with blue arrows).

https://acapela.com/
http://Cereproc.com
http://ModelTalker.org
https://bit.ly/3C57WpT


20 Acoustics Today • Spring 2022

Statistical Parametric Speech Synthesis 
As with unit selection synthesis, statistical parametric 
speech synthesis (SPSS)(Zen et al., 2009) requires a sub-
stantial corpus of speech data to be used in training its 
parametric phonetic models. Unlike unit selection syn-
thesis, once the training process is completed, however, 
the original speech waveform data are no longer needed. 
Instead, the SPSS machine-learning process develops 
models for the acoustic structure of each phoneme. These 
models are then able to generate the time-varying param-
eters values for the parameters to sound component of 
the TTS system. Thus, fully trained SPSS models replace 
hand-coded rule systems in the phonetics to parameters 
component in Figure 1. In practice, the SPSS models 
are commonly sets of hidden Markov models (HMMs), 
one model for each phoneme, that describe the acoustic 
structure of the phoneme as a sequence of acoustic states, 
allowing the time-varying trajectories of parameters to 
be regenerated from the properties of the state sequence. 
The parameters the SPSS models learn are typically those 
describing the time-varying speech source function 
(voicing or friction) and moment-to-moment spectral 
features. The parameters to sound or vocoder component 
then uses the source and spectral parameters to regener-
ate audio data via digital filtering. 

SPSS synthesis has several advantages over both rule-based 
formant synthesis and unit selection. First, because the 
SPSS models for parameter generation can be trained 
on a corpus of speech from a single talker, the output of 
the SPSS voice sounds recognizably like the talker who 
recorded the corpus. Moreover, because the training pro-
cess is largely automatic, building multiple personal voices 
is not especially difficult or labor intensive. Compared 
with unit selection based on a similar-size speech corpus, 
particularly for smaller corpora (those having less than 
four hours of running speech), SPSS voices are not prone 
to discontinuities at segment boundaries and tend to have 
more natural-sounding prosodic structure. And because 
SPSS voices use parametric synthesis, it has the potential 
for changing characteristics of the voice quality or intro-
ducing expressiveness, but this potential is not yet realized.

There are, however, two main drawbacks to SPSS voices. 
First, the naturalness of the resulting synthetic voice is 
limited by the ability of the vocoder to reproduce natu-
ral-sounding voice quality. Some vocoder output sounds 

“buzzy” or “mechanical” when compared with unit selec-
tion voice quality. Second, in SPSS, each phonetic model 
represents an average of the acoustic patterns seen for 
all instances of the same contextually similar phonetic 
segment. This averaging tends to obscure some of the 
natural variability in human speech, leading to more 
monotonous sounding speech. Often, SPSS systems 
attempt to compensate for this averaging effect by exag-
gerating or boosting the variability of parameters over 
time. However, once the natural variability is lost due to 
averaging, it is not really possible to restore it.

Despite these two drawbacks, ACC users of Model-
Talker voices have generally had favorable reactions to 
SPSS voices and the best of the SPSS laboratory TTS 
systems have been able to produce speech with audio 
quality closely approaching that of unit selection systems. 
Any long-term debate about the relative merits of unit 
selection versus SPSS voices, however, appears to rapidly 
becoming moot, particularly as it applies to large com-
mercial grade TTS voices. This is due to the emergence 
of new deep-learning models.

Deep Neural Network Speech Synthesis
In the past decade, deep neural networks (DNNs) and 
deep learning have revolutionized machine learning 
and led to large-scale improvements in several applica-
tion areas. Large improvements have been observed in 
areas as diverse as speech recognition, machine trans-
lation between languages, natural language processing, 
text summarization, and speech synthesis. Explaining, 
even grossly, how DNNs function is beyond the scope 
of this article, but a few examples and consideration of 
how some models are changing the flow within the TTS 
system framework shown in Figure 5 may give a reason-
able sense of the emerging changes.

In Figure 5, the path from text to phonetics through 
phonetics to sound is a good place to start because this 
is the path used by WaveNet (van den Oord et al., 2016), 
which was one of the first “end-to-end” neural TTS sys-
tems. The authors have created an excellent website that 
describes their work and provides audio examples (see 
https://bit.ly/3qtNrkm). Training for WaveNet required 
about 25 hours of speech from a single female speaker 
and required days of CPU and GPU processing on 
Google’s servers.
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A large number of current end-to-end neural TTS 
systems follow the path from initial text processing 
through text to parameters and thereafter to a param-
eters to sound component. In some cases, “text” is taken 
somewhat broadly to refer to both literal words or char-
acters, or to a form in which standard word spellings 
are replaced with something like International Phonetic 
Alphabet (IPA) characters to resolve letter to sound 
ambiguity. This is particularly helpful for languages like 
English that have borrowed words from many other 
languages and also helps when building multitalker 
and multilanguage systems. Most systems on this path 
generate Mel-scaled spectrograms as the output of the 
text to parameters component, relying on one of several 
vocoder methods (e.g., Griffin and Lim, 1984) or DNN-
based vocoders, for generating audio output from the 
Mel-scaled spectrograms without explicitly applying a 
source/filter model. (Note: the Mel scale is a perceptu-
ally motivated transformation of linear frequency to a 
scale with approximately equal pitch steps; see Stevens 
et al., 1937.) However, a few systems may also generate 
parameters for alternative vocoders such as the WORLD 
vocoder (Morise et al., 2016). Although no systems are 
presently doing this, output in terms of formant synthesis 
parameters is also conceivable, with the final parameters 
to sound component being a formant synthesis vocoder.

Finally, as the ultimate end-to-end DNN TTS approach 
there is the path from initial text processing through TTS 
directly to audio output. This is a system referred to as 
end-to-end adversarial TTS (EATS) by Donahue et al. 
(2020; see https://bit.ly/3wpQBGR for audio examples). 
There is nothing before the audio generation but a light 
text-processing stage to handle tokenization and text 
normalization, perhaps with an additional substitution 

of IPA word spellings instead of standard word spell-
ings. The system is complex and requires a very large 
data corpus and much computer time to train, but their 
examples illustrate output that is virtually indistinguish-
able from human speech. Unfortunately, expressiveness 
remains a challenge for this technology. Neural TTS sys-
tems can learn to express anything that is present in their 
training data but generalizing beyond seen expressive 
modes is an area of active ongoing research (e.g., Skerry-
Ryan et al., 2018; see examples at https://bit.ly/30epgeW).

Neural TTS systems come at substantial expense both 
in terms of the amount of data that is needed and in the 
computational resources to train the models. Many are 
currently so resource heavy that they are only usable by 
well-equipped industry or university laboratories. How-
ever, there are elements of this work that are already 
having an impact, notably the neural vocoder programs, 
which produce highly natural-sounding speech output 
given the correct input. It may take a very large amount 
of data and heavy server load to train these vocoders, but 
once trained, they can be used with Mel spectrograms 
generated by many other applications and are able to run 
in real time on desktop-grade computers.

Conclusions
The path from rule-based formant synthesis in the 1980s 
to the DNN voices being studied in research laboratories 
today represents significant growth in TTS technology. 
This growth has been followed through the lens of how the 
improvements impact one of the potentially most exciting 
applications of TTS technology: its potential to provide 
unique personal voices for people who are unable to com-
municate vocally without assistance. A notable subset of 
the potential users of TTS technology are those whose 

Figure 5. Deep neural network (DNN) TTS pipelines emerging in current research efforts from Figure 1.

https://bit.ly/3wpQBGR
https://bit.ly/30epgeW
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speech is at risk of being lost due to disease or injury. 
For those users, the ability to bank their existing speech 
for its use later in as a personal TTS voice of the quality 
now emerging form the laboratory is a highly promis-
ing prospect.

We initially identified four features that seem to be of 
greatest importance to users for assistive voice technol-
ogy: intelligibility, naturalness, identity, and expressivity. 
Of these four, the first three are essentially solved prob-
lems, at least for laboratory-grade neural TTS systems. 
Given the rate of progress with the technology, it seems 
likely that for these three features, medical and consumer 
applications will not be long in coming. Expressivity, 
however, remains the largest unsolved issue for TTS sys-
tems. Parametric synthesis affords the ability to control 
features known to relate to expressive modes of speaking, 
and it will be fascinating to see how natural language 
processing (NLP) may end up helping users quickly find 
the right emotion to convey along with their text when 
it is spoken aloud.
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