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Introduction
In acoustics, as in many fields, complex phenomena are 
often described with representations, or models. Unfortu-
nately, all models are inherently imperfect representations 
of the real world. As the mathematician von Neumann 
(1947, p. 626) put it, “Truth is much too complicated to 
allow anything but approximations.” Often, the models 
are highly idealized; for example, a fish may be repre-
sented as a cylinder in an acoustical scattering calculation. 
Similarly, a room may become a rectangular box and 
the ocean a homogeneous layer of water bounded above 
by air and below by sediment. Such simplifications can 
provide invaluable insights into acoustical phenomena, 
however. These idealizations allow us to express math-
ematically how sound waves interact with a fish, a room, 
or the ocean. The error incurred in making these approx-
imations is called model error and is one component of 
the error budget (Pettit and Wilson, 2017) that all model-
ing efforts seek to balance against model fidelity.

Computers make it possible to create much more realistic 
models by translating the mathematical equations into 
computer code that can perform many more calculations 
than a mathematician can with a pencil. Increasing model 
fidelity (adding complexity to create a more detailed repre-
sentation) can greatly reduce the model error. For example, 
the fish can have fins and a tail, the room can have balco-
nies and seats, and the ocean can have a wavy surface and 
rocks in the sediment. The important acoustical effects 
arising from these examples would be intractable without 
computers. However, a computational model differs in 
important ways from a mathematical model. The math-
ematical model uses assumptions to simplify the physics. 
To solve the equations on a computer, they must be dis-
cretized for representation on a finite precision machine. 
For instance, integrals become weighted sums and deriva-
tives become finite differences; this introduces error into 
the computational model that is not present in the math-
ematics. A second component of the error budget is the 

discretization error. It can be reduced by operations such 
as grid refinement or more advanced numerical methods. 

Because models, whether computational or analytical, 
have these inherent errors due to simplifications, labora-
tory and field experiments remain essential for validating 
models and understanding acoustical phenomena. Real-
world data are also needed as the model’s input. Any 
data used to inform the model will have errors due to 
sensor calibration, resolution, and natural variability of 
the quantity being measured. This measurement error 
is another term in the error budget. For example, it is 
impossible to measure every grain of sand for input to 
an ocean acoustics model, and the action of taking a core 
sample disturbs the layered structure of the sediment, 
making any future description of this variable incorrect.

This article focuses on the final piece of the error budget, one 
that is perhaps the least often considered, statistical error. 
Indeed, most computational acoustics models are still con-
structed from a deterministic perspective, meaning that all 
parameters required to solve the mathematical expressions 
are specified as though exactly known. In contrast, experi-
mentalists are usually aware that, even in highly controlled 
laboratory environments, measurement errors are always 
present and introduce uncertainty into observations, which 
must be captured by a suitable error analysis. 

It is similarly important in computational modeling to 
assess how uncertainties in model inputs affect the out-
puts. An ocean acoustic propagation model, for example, 
needs information about seabed composition to compute 
the sound field in the water. But the seabed composition 
cannot be measured everywhere, and the measurements 
themselves are subject to error. Thus, the sediment prop-
erties can only be represented probabilistically. This, in 
turn, affects how much sound is reflected from and trans-
mitted into the seabed. Characterizing the probability 
distribution of the output, in this case the sound field, is 
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not necessarily straightforward. A common assumption 
is that each source of error is independent, and the uncer-
tainty retains the same form in the model output. But this 
is inappropriate when the output depends on many com-
plex nonlinear interactions. Misapplication of statistical 
information or failure to take uncertainty into account can 
undermine the utility and perception of the model itself.

To fully address the impact of uncertainties on the model 
output, modelers adopt the probabilistic perspective 
(Figure 1). The model is still a representation of a physical 
system, which relates a number of input parameters to an 
output quantity of interest (QoI). However, in the probabi-
listic perspective, probability distributions (which measure 
the likelihood that a variable takes on a particular value 
or range of values) are used to represent uncertainties in 
the parameters and QoI. Weather forecasting provides a 
familiar example. Forecast models are typically initialized 
with satellite and weather balloon data, which by nature 
imperfectly characterize the exact state of the atmosphere. 
The models then predict a QoI such as the path of a hur-
ricane, as conveyed by the “cone of uncertainty” on the 
weather map used by emergency management agencies 
and the public to prepare for storms. 

Considerations in Computational Modeling
Modelers use uncertainty in the general sense of a lack of 
knowledge. Uncertainties can be decomposed into two 
broad types, epistemic and aleatory. Epistemic uncertainty 
arises from imperfect knowledge of the parameter. Aleatory 
uncertainty is caused by actual random variability, for exam-
ple, whether a coin toss lands on heads or tails. However, 
categorizing the types of uncertainty can be challenging 
because most practical uncertainties have elements of both 

types. For example, human or animal behaviors exhibit 
random variability because understanding of all factors 
driving such behaviors is extremely limited. As more is 
learned about biological drivers of behavior, uncertainty 
can be reduced (epistemic), but variables like the subject’s 
motivation are necessarily aleatory. However, regardless of 
the type of uncertainty, they can be treated the same way 
mathematically, with probability distributions. For a more 
thorough discussion of the types of uncertainty, among 
other related definitions and techniques, see Smith (2013). 

In this article, we focus on uncertainty describable with 
random variables or processes. For example, the location 
of an acoustic source in an experiment may be unknown 
and represented by a random variable that is uniformly 
distributed over some region. The size of the region could 
be reduced with more accurate measurement techniques 
(thus exemplifying epistemic uncertainty), whereas 
measurement errors that can be described only in proba-
bilistic terms would be aleatory.

Computational techniques for incorporating uncertainty 
into a model can be classified into two types: intrusive 
and nonintrusive. An intrusive method’s mathematical 
formulation changes the underlying model and thus 
requires reworking a computer program. Because a 
great deal of effort and resources go into developing and 
testing deterministic computer codes, we focus here on 
nonintrusive methods, which permit reuse of existing 
programs. For example, suppose a colleague has provided 
a complex code for calculating the reverberation time of 
a room given its dimensions and construction materi-
als. Incorporating uncertainty, perhaps in the absorption 
coefficient of the wall paneling, in an intrusive manner 
would require modifying that code to handle the details 
of the uncertainty directly. However, a nonintrusive 
technique employs the code in a “black box” sense, only 
needing to evaluate the reverberation time using the 
existing code at certain values of its inputs.

Among nonintrusive methods, Monte Carlo simulation 
(MCS) is the most widely known. However, more recently, 
generalized polynomial chaos (GPC) expansions have 
gained ground as both an alternative and a complemen-
tary approach to MCS. GPC can be more efficient than 
MCS for certain problems and produces a stochastic rep-
resentation of a computational expensive code, called a 
metamodel. And, importantly, in practice the metamodel 

Figure 1. Probabilistic perspective on modeling. The model is 
a mathematical or computational representation of a physical 
system. It relates a number of input parameters to an output 
quantity of interest (QoI). In the probabilistic perspective, the 
parameters and QoI are described by probability distributions. 
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is generally much less computationally expensive in 
terms of CPU time and memory to evaluate than the 
original code. Data-based approaches (e.g., Gaussian pro-
cess regressions) can be combined with these methods 
to bridge the gap between equation-based models and 
experimental data. In this article, we discuss the MCS 
and GPC approaches and demonstrate their application 
using a classical problem in acoustics, namely the Lloyd’s 
mirror, which, despite its relative simplicity, richly illus-
trates the hazards of neglecting uncertainties and how 
probabilistic approaches can address this problem. 

What Is the Lloyd’s Mirror Effect?
The Lloyd’s mirror effect (named after Humphrey Lloyd, 
1800-1881) is the pattern of constructive and destructive 
interference occurring when sound waves encounter a flat, 
reflective boundary. A previous article in Acoustics Today 
(Carey, 2009) described this effect and its history in detail. 
Although Carey’s article focused on Lloyd’s mirror in the 
context of underwater acoustics, it occurs in many other 
situations, such as in the atmosphere above the ground 
and indoors next to a wall. The geometry is illustrated in 
Figure 2. We have adopted the coordinate convention typi-
cal of atmospheric acoustics, with the vertical axis upward.

Although there is only one physical acoustic source in the 
Lloyd’s mirror problem (the jet), the presence of the reflec-
tive boundary surface creates a pressure field consisting of 
the sum of two apparent sources, one representing sound 
from the actual source and the other from a so-called image 
source. The image source is located an equal distance from 
the true source on the other side of the reflecting bound-
ary (Figure 2). In the present work, we assume a perfectly 
rigid boundary that occurs for propagation in air above a 
denser, harder medium such as water or rock. In this case, 
the image source is equal in magnitude and phase to the 
true source. However, if the reflecting surface has a different 
shape (such as a dome or wavy ocean surface), or different 
material properties (such as sound absorbing material), then 
the relationship between the source and image must also 
change. In Carey (2009), the reflecting boundary is “pres-
sure release,” meaning that the acoustic pressure is zero on 
the boundary (as for the water-air interface in underwater 
acoustics) and the image source is equal in magnitude and 
opposite in phase to the true source. 

Examining Figure 2 further, a few critical details of the Lloyd’s 
mirror problem emerge. Given the horizontal distance from 

the source to receiver (the range) and both the source and 
receiver heights, different distances are traveled by sound 
along the direct and reflected paths (unless the receiver is on 
the reflecting surface itself). This means that the received sig-
nals from the actual and image sources can differ in phase 
and thus reinforce or partially cancel each other. This effect 
is compounded if the average sound speeds along the direct 
and reflective paths differ as well, as occurs in real environ-
ments where the sound speed depends on parameters such as 
temperature and salinity that vary in time and space. 

Figure 3 shows examples of the Lloyd’s mirror for propa-
gation in air above a rigid surface, with a source height 
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Figure 2. Lloyd's mirror geometry and interference mechanism 
(top). Red line: direct path from the actual source to the 
receiver; blue line: path that reflects off the ground before 
reaching the receiver. The total length of the reflected path 
equals the length of a line drawn from an image source below 
the ground plane to the receiver (dashed line). In constructive 
interference (center), the sound along the direct and reflected 
paths are in phase and increase the amplitude when combined, 
whereas in destructive interference (bottom), they are out of 
phase, leading to decreased amplitude when combined. Here, 
x is the horizontal distance from the source to receiver, z is 
the receiver height, rd is the length of the direct path (from the 
actual source to the receiver); rr is the length of the reflected 
path (from the image source to the receiver); and h is the height 
of the source above the ground.
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of 5 m and the same sound speed of 340 m/s along both 
direct and reflected paths. In Figure 3, we plot the trans-
mission loss (TL), a measure of the signal loss between 
the source and receiver in decibels relative to the original 
source magnitude. TL is commonly used in propagation 
studies, being defined such that it equals zero at a dis-
tance of 1 m from the source in free space and increases 
with increasing loss in pressure amplitude. The f re-
quency of the source was changed from 170 Hz (Figure 
3a) to 340 Hz (Figure 3b) to 680 Hz (Figure 3c). These 
values correspond to wavelengths of 2 m, 1 m, and 0.5 
m, respectively. The narrow, dark regions of Figure 3 are 
receiver locations where the direct and reflected waves 
are very nearly out of phase with one another and thus 
destructively interfere. As the frequency is increased, the 
interferences become more closely spaced.

Impact of Uncertainty on Lloyd’s Mirror 
Although the mathematical description of the Lloyd’s mirror 
effect is simple, the interference pattern can be difficult to 

predict accurately because it is extremely sensitive to the 
exact values of the model parameters. Thus, we would like to 
know how uncertainty in the model parameters influences 
the accuracy of sound field predictions. 

In most practical experiments, both epistemic and 
aleatory uncertainties arise. Epistemic uncertainty is 
exemplified by not exactly knowing the range between 
the source and receiver or their heights. Random varia-
tions in the sound speeds, as occur from wind turbulence 
in the atmosphere or fluid mixing and other disturbances 
in a harbor, exemplify aleatory uncertainty. 

Taking a probabilistic perspective, we wish to predict 
statistics of the sound field, in particular, the mean TL 
of the Lloyd’s mirror problem in the presence of these 
uncertainties. We assume that there are five uncertain 
parameters: the receiver range and height, the source 
height, and the sound speed of the air along the direct 
and reflected paths. 

Figure 3. Frequency dependence of the Lloyd’s mirror transmission loss (TL) interference pattern. a: Wavelength (λ) = 2 m or 
170 Hz; b: λ = 1 m or 340 Hz; c: λ = 0.5 m or 680 Hz. Darker regions indicate destructive interference (high TL), whereas lighter 
regions indicate constructive interference (low TL).

Figure 4. Impact of uncertainties on the TL for the Lloyd mirror effect for various values of wavelength λ and variability. a: Small 
variability; b: medium variability; c: large variability. Note that increasing variability approaches the incoherent result.
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Figure 4 plots the mean TL for three cases of increasing 
variability of the uncertain quantities. Figure 4a includes 
the least uncertainty and Figure 4c includes the most. The 
exact details of how the variability is specified is described 
later in the article, but first compare the results in Figure 
4 with those in Figure 3b. Figure 3b is the same case as 
Figure 4 but assumes all model parameters are known; it 
is the deterministic result. Observe that as the amount of 
variability increases, the Lloyd’s mirror interference pat-
tern gradually vanishes. In fact, for the largest variability 
case (Figure 4c), the phases of the direct and reflected 
paths are nearly completely randomized relative to one 
another such that the pattern of constructive and destruc-
tive interference is averaged out. Therefore, the sound field 
is found simply by adding the direct and reflected ener-
gies together, in which case the two contributions are said 
to be incoherent. In ocean acoustics, coherence is dimin-
ished by scattering from ocean surface waves and bubbles 
(Cron and Sherman, 1962; Kuperman and Ingenito, 1980). 
In the atmosphere, coherence loss can be caused by tur-
bulence (Daigle, 1979; Clifford and Lataitis, 1983). The 
important takeaway is that the details of the interference 
pattern depend on the uncertain parameters, and, there-
fore, the mean TL cannot be accurately predicted when 
these parameters are assumed to have exact, fixed values.

To further illustrate the impact of uncertainty on the inter-
ference pattern, Figure 5 shows the TL computed at three 

sampled values of the sound speed from the high-variability 
probability density function (PDF). In Figure 5, left, the 
image corresponds to a sound speed of 335 m/s and the TL 
is between 20 and 25 dB all the way out to a 50-m range. In 
Figure 5, center, the image (340 m/s) has a region of high TL 
(a null) near the ground at a range between about 15 and 30 
m. The near ground TL is important in noise applications. 
The image in Figure 5, right (345 m/s), has two smaller null 
regions near the ground. If the sound speed measurement 
has just a 1% error, the near-ground TL prediction at a range 
of 50 m could be off by as much as 15 dB!

Details of the Lloyd’s Mirror Study
Probabilistic modeling requires deciding how to represent 
the unknown parameters with probability distributions. 
This is not a simple matter and very often assumptions 
must be made. These decisions are best informed by data, 
but in the absence of data, it is common to rely on expert 
opinions. A typical approach is to assume unknown 
parameters follow a normal (Gaussian) distribution; this 
simplifies the math for analytical calculations and is valid 
for measurements where the observed uncertainty is due 
to many independent, underlying random quantities. 
However, normal distributions are not appropriate for all 
situations and may, in fact, have undesirable features that 
preclude their use. Normally distributed random variables 
can take on both positive and negative values. Negative 
values are unlikely but still occur if the mean is positive 
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Figure 5. Three evaluations of the TL for the Lloyd’s mirror problem for different reflected wave sound speed: 335, 340, and 345 
m/s, respectively. These sample points are also shown in relation to the probability density function (PDF) of the reflected sound 
speed random variable for the large variability case. Colored lines and borders indicate which input corresponds to which output. 
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and the standard deviation is small. In the Lloyd’s mirror 
example considered here, the uncertain parameters are all 
strictly positive quantities. If their assumed distributions 
do not share this property, negative values may lead to 
nonphysical results if not failure of the computer program. 

The log-normal distribution is thus used for the Lloyd’s mirror 
problem. This means that the logarithms of the parameters are 
normally distributed so that the parameters have the “strictly 
positive” property. If the mean is sufficiently large compared 
with the standard deviation, a log-normal distribution may 
appear to be very nearly the same as a normal distribution as 
observed in Figure 5, inset, that shows the PDF of the sound 
speed of the reflected path. 

For the results shown in Figure 4, the mean (𝑚) and nor-
malized standard deviation (𝜎/𝑚) (where 𝜎 is the usual 
standard deviation) for the log-normal distributions of each 
random variable corresponding to three different levels of 
variability are shown in Table 1. Because the source height 
and receiver location are uncertain, Figure 4 was produced 
with the means of the receiver range and height corre-
sponding to the position on the plot. The smaller standard 
deviation is used for the sound speed because the interfer-
ence pattern is especially sensitive to variations in those 
parameters because they impact the signals’ phases.

Methods for Quantifying Uncertainty in 
Computational Models
Two families of uncertainty quantification techniques 
are considered in this article to explore the impacts 

of uncertainty on the Lloyd’s mirror effect. Both are 
nonintrusive. Each has a number of variants that are 
beyond the scope of this article. However, the following 
discussion provides the reader with a starting point for 
further investigation.

Monte Carlo Methods
Monte Carlo methods are attributed to Metropolis and 
Ulam (1949), who solved equations describing nuclear 
fission on a post-World War II computer using stacks of 
punch cards for input and output! They demonstrated 
that random sampling led to plausible results for as of 
then unobtainable solutions to a stochastic problem. 
MCS methods are well-known and used substantially 
in engineering studies.

MCS arose from the observation that an integral of 
a function of a single variable can be viewed as the 
probabilistic mean of the function when its argument is 
interpreted as a uniformly distributed random variable 
Thus, the integral may be computed by drawing samples 
from a uniform distribution, evaluating the function 
at those values, and calculating the sample average of 
the results. This approach is easily extended to multiple 
dimensions and straightforward to implement nonintru-
sively on existing codes for computing acoustic pressure 
fields. The primary drawback of ordinary MCS is that 
an impractically large number of samples are required 
for convergence in regions of low probability that can 
be important in applications where extreme values (e.g., 
threshold crossings) are of interest. 

The errors for MCS theoretically decrease in proportion 
to 1 ⁄ √ N (Caflisch, 1998). This is slow! For the Lloyd’s 
mirror example, using a strategy called Latin hyper-
cube sampling (LHS), the observed rate appears closer 
to 1 ⁄ N, a significant speedup. If the goal is to approxi-
mately calculate the mean of the QoI (in this case TL) 
to within some percentage of the actual mean, and 
MCS achieves this with 10,000 computations of the 
TL, LHS can achieve the same accuracy using only 100 
computations. LHS is designed to distribute the sam-
ples more evenly over the parameters than basic MCS, 
in which samples tend to cluster. The idea underlying 
LHS is to partition the domain for each random vari-
able into N equally likely intervals, then to sample each 
interval just once. The order in which the intervals are 
sampled is random. 

Variability parameters used in Figures 4-6

Normalized  
standard deviation

Variable Mean Small Medium Large

Direct sound speed 340 m/s 2×10-4 2×10-3 2×10-2

Reflected sound speed 340 m/s 2×10-4 2×10-3 2×10-2

Source height 5 m 1×10-3 1×10-2 1×10-1

Receiver height 0-30 m 1×10-3 1×10-2 1×10-1

Receiver range 0-50 m 1×10-3 1×10-2 1×10-1

Table 1. Mean and normalized standard deviations for the  
log-normal distributions, used in the cases involving small, me-
dium, and large uncertainty
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Generalized Polynomial Chaos
Generalized polynomial chaos (GPC) is an extension 
of polynomial chaos (PC), originally devised by Wiener 
(1938). PC specifically applies to expansions in terms of 
normal random variables, whereas Xiu and Karniadakis 
(2002) extended the method to accommodate a much a 
larger set of probability distributions, including the log-
normal distributions used here. GPC involves computing 
the coefficients of a polynomial expansion, which turn 
out to be expectations of functions of the random param-
eters. Although the full details are beyond the scope of 
the present article, GPC can be approached either intru-
sively through derivation of a new system of equations 
and hence a new computer program to solve it or nonin-
trusively by computing the expectation integrals directly 
using quadrature or regression methods.

Under the right circumstances, GPC will exhibit spectral 
convergence (approximation error decreases exponen-
tially fast as the number of samples is increased) and thus 
can solve problems with far fewer samples than MCS. For 
the example discussed in Monte Carlo Methods, where 
10,000 samples produce TL statistics accurate enough for 
the purpose at hand and 100 samples give the same accu-
racy if LHS is used, then GPC may achieve the required 
accuracy with only 5 samples! 

GPC is also not restricted to the estimation of statistical 
information; the coefficients, when combined with the poly-
nomial basis expansion, yield a surrogate (or meta-) model, 
which can be evaluated rapidly. The surrogate provides a 
polynomial representation of the complicated physics in 
the original computational model, which can be useful for 
generating realizations in a larger simulation. For example, 
instead of integrating a Lloyd’s mirror solver into a model 
of aircraft noise near the ground, a GPC surrogate could 
be used to speed the computation. The surrogate can sup-
port design decisions by rapidly assessing which parameters 
are the most important. Interested readers can find further 
information on GPC in Wixom et al. (2019). 

Figure 6 shows the relative performance of three methods 
for the three levels of variability. Performance is measured 
by how well each method predicts the mean TL shown 
in Figure 4 for a given number of input samples. The 
error in mean TL is spatially averaged over all consid-
ered ranges and receiver heights to compute a scalar error 
metric for plotting in Figure 6. The solid lines in Figure 6 

show theoretical convergence rates for reference. Such an 
“error-per-sample-point” metric is a common measure of 
performance for uncertainty quantification techniques. It 
is often the case that the underlying deterministic model 
(black box) takes a long time to evaluate. Thus, a method 
requiring fewer samples obtains probabilistic information 
on the QoI much faster. Observe that MCS results track 
well with its theoretical convergence rate. GPC outper-
forms MCS and LHS for small and medium variability, but 
MCS and LHS perform better for large variability.

Summary
Computational models are as ubiquitous in acoustics as they 
are in other areas of physics. In fact, computational model-
ing is rapidly expanding from acoustical applications where 
it has been common for decades, such as underwater and 
structural acoustics, to others such as biological acoustics 
and noise. Yet trust in these models relies on systematic 
and rigorous assessment, which is often challenging in 
itself. Neglecting uncertainty can lead to misinterpreta-
tion of model results, particularly when comparing against 
experiments. Experimentalists have learned to characterize 
measurement uncertainties, but for computational acousti-
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Figure 6. Comparison of performance of different uncertainty 
quantification methods using dependence of the spatially 
averaged error in mean TL of the predictions on the number 
of model samples used to estimate the TL. Dotted lines: 
ordinary Monte Carlo simulation (MCS); dashed lines: Latin 
hypercube sampling (LHS); dash-dot lines with diamonds; 
generalized polynomial chaos (GPC). Red lines: small 
uncertainty case; blue lines: medium uncertainty; green lines: 
large uncertainty; black lines: reference lines for 1 ⁄ N, 1 ⁄ √ N , 
and e-N convergence rates. The reference for error was a 16,384 
sample LHS result.
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cians, this is often new territory. Nevertheless, characterizing 
uncertainties is a key aspect of the error budget for a given 
modeling effort.

We have used the Lloyd’s mirror effect to demonstrate the 
impacts of varying degrees of uncertainty. Two popular 
techniques for propagating uncertainties from model 
input to predictions of QoI were described. It is impor-
tant to note that these techniques are not “one size fits 
all”; the best approach is very much problem dependent. 

Although we have only skimmed the topics of error 
analysis and uncertainty quantification in computational 
models, we hope the reader takes away their importance 
and is motivated to try incorporating the techniques pre-
sented here into their own analyses.
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