Page 16 - Volume 8, Issue 4 - Winter 2012
P. 16

mechanical or thermal bioeffects. The addition of MR guid- ance and feedback control, in particular, have resulted in a complete system that is capable of depositing energy into the skull in a manner that is both non-ionizing and non-invasive. The developments over the last decade have culminated in clinical trials for chronic neuropathic pain, essential tremor, and the treatment of brain metastasis. For neurosurgical pro- cedures in particular, focused ultrasound enables a same-day alternative to surgery, making potential risky procedures now viable. Furthermore, the use of ultrasound in conjunction with therapeutic agents could potentially allow safe, localised, targeted delivery to the brain. Finally, with the development of more advanced correction algorithms, phased arrays, and multi-channel driving systems, devices will gain an increased ability to precisely target locations within larger steerable volumes and with more power. Continued development will continue to unveil new applica- tions and enable new therapies for the treatment of brain metastasis and central nervous system (CNS) diseases.AT
References
1 J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, “New method for the generation and use of focused ultrasound in experimental biology,” J. Gen. Physiol. 26(2), 179–193 (1942).
2 W. J. Fry, J. W. Barnard, E. J. Fry, R. F. Krumins, and J. F. Brennan, “Ultrasonic lesions in the mammalian central nervous system,” Science 16, 122(3168), 517–518 (1955).
3 C. M. Tempany, E. A. Stewart, N. McDannold, B. J. Quade, F. A. Jolesz, and K. Hynynen, “MR imaging-guided focused ultra- sound surgery of uterine leiomyomas: A feasibility study,” Radiol. 226(3), 897–905 (2003).
4 K. Hynynen and F. A. Jolesz, “Demonstration of potential non- invasive ultrasound brain therapy through an intact skull,” Ultrasound Med. Biol. 24(2), 275–283 (1998).
5 F. J. Fry and J. E. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am. 63(5), 1576–1590 (1978).
6 J. Sun and K. Hynynen, “Focusing of therapeutic ultrasound through a human skull: A numerical study,” J. Acoust. Soc. Am. 104(3 Pt 1), 1705–1715 (1998).
7 J. Sun and K. Hynynen, “The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area,” J. Acoust. Soc. Am. 105(4), 2519–2527 (1999).
8 G. T. Clement, J. Sun, T. Giesecke, and K. Hynynen, “A hemi- sphere array for non-invasive ultrasound brain therapy and sur- gery,” Phys. Med. Biol. 45(12), 3707–3719 (2000).
9 J-L. Thomas and M. A. Fink, “Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 43(6), 1122–1229 (1996).
10 J. F. Aubry, M. Tanter, M. Pernot, J-L.Thomas, and M. Fink, “Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans,” J. Acoust. Soc. Am. 113(1), 84–93 (2003).
11 G. T. Clement and K. Hynynen, “Correlation of ultrasound phase with physical skull properties,” Ultrasound Med. Biol. 28(5), 617–624 (2002).
12 J. White, G. T. Clement, and K. Hynynen, “Transcranial ultra- sound focus reconstruction with phase and amplitude correc- tion,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 52(9), 1518–1522 (2005).
13 K. Hynynen and N. McDannold, “MRI-guided focused ultra- sound for local tissue ablation and other image-guided interven-
tions,” in Emerging Therapeutic Ultrasound, 1st ed., edited by J. Wu and W. L. Nyborg (Singapore World Scientific Publishing Co. Inc., 2006) p. 167.
14 N. B. Smith and K. Hynynen, “The feasibility of using focused ultrasound for transmyocardial revascularization,” Ultrasound Med. Biol. 24(7):1045–1054 (1998).
15 N. McDannold, N. Vykhodtseva, and K. Hynynen, “Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity,” Phys. Med. Biol. 51(4), 793–807 (2006).
16 C. C. Coussios, C. H. Farny, G. ter Haar, and R. A. Roy, “Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU),” Int. J. Hyperthermia 23(2), 105–120 (2007).
17 K. Hynynen and G. Clement, “Clinical applications of focused ultrasound-the brain,” Int. J. Hyperthermia 23(2), 193–202 (2007).
18 X. Yin and K. Hynynen, “A numerical study of transcranial focused ultrasound beam propagation at low frequency,” Phys. Med. Biol. 50(8), 1821–1836 (2005).
19 N. McDannold, G. T. Clement, P. Black, F. Jolesz, and K. Hynynen, “Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients,” Neurosurgery 66(2), 323–32; discussion 332 (2010).
20 J. Song and K. Hynynen, “Feasibility of using lateral mode cou- pling method for a large scale ultrasound phased array for non- invasive transcranial therapy,” IEEE Trans. Biomed. Eng. 57(1), 124–133 (2010).
21 E. Martin, D. Jeanmonod, A. Morel, E. Zadicario, and B. Werner, “High-intensity focused ultrasound for noninvasive functional neurosurgery,” Ann. Neurol. 66(6), 858–861 (2009).
22 J. W. Elias, “A feasibility study to evaluate safety and initial effec- tiveness of ExAblate Transcranial MR guided focused ultra- sound for unilateral thalamotomy in the treatment of essential tremor,” Focused Ultrasound Surgery Foundation, Research Project NCT01304758 (2012).
23 J. W. Elias, “Dr. Jeff Elias (University of Virginia) discusses the results from the essential tremor study of the first 10 patients,” www.insightec.com/56475.html. Last viewed 9/15/2011.
24 J. W. Elias, D. Huss, M. A. Khaled, S. J. Monteith, R. Frysinger, and J. Loomba, “MR-guided focused ultrasound lesioning for the treatment of essential tremor. A new paradigm for noninva- sive lesioning and neuromodulation,” paper presented at the Congress of Neurological Surgeons 2011 Annual Meeting (2011).
25 D. Jeanmonod, B. Werner, A. Morel, L. Michels, E. Zadicario, G. Schiff, and E. Martin, “Transcranial magnetic resonance imag- ing-guided focused ultrasound: noninvasive central lateral thal- amotomy for chronic neuropathic pain,” Neurosurg. Focus 32(1):E1 (2012).
26 K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood- brain barrier in rabbits,” Radiology 220(3):640–646 (2001).
27 M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen,,“Noninvasive localized delivery of herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11719–11723 (2006).
28 M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Targeted delivery of antibodies through the blood-brain barri- er by MRI-guided focused ultrasound,” Biochem. Biophys. Res. Commun. 340(4), 1085–1090 (2006).
29 L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat
12 Acoustics Today, October 2012


































































   14   15   16   17   18