Page 38 - Volume 8, Issue 4 - Winter 2012
P. 38
IEEE Trans. Ultrasound Ferroelect. Freq. Control 51,726–736
(2004).
12 Z. Xu, J. B. Fowlkes, E. D. Rothman, A. M. Levin, C. A. Cain,
“Controlled ultrasound tissue erosion: The role of dynamic interaction between insonation and microbubble activity,” J. Acoust. Soc. Am. 117, 424–435 (2005).
13 M. Canney, V. Khokhlova, J. H. Hwang, T. Khokhlova, M. Bailey, L. Crum, “Tissue erosion using shock wave heating and mil- lisecond boiling in high intensity ultrasound field,” in: Proc. 9th International Symposium on Therapeutic Ultrasound (23–26 September 2009, Aix-en-Provence, France), pp.36–39.
14 M. S. Canney, V. A. Khokhlova, O. V. Bessonova, M. R. Bailey, L. A. Crum, “Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound,” Ultrasound Med. Biol. 36, 250–267 (2010).
15 T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, M. R. Bailey, “Controlled tissue emul- sification produced by high intensity focused ultrasound shock,” J. Acoust. Soc. Am. 130, 3498–3510 (2011)
16 W. W. Roberts, T. L. Hall, K. Ives, J. S. Wolf Jr., J. B. Fowlkes, and C. A. Cain, “Pulsed cavitational ultrasound: A noninvasive tech- nology for controlled tissue ablation (histotripsy) in the rabbit kidney,” J. Urol. 175(2), 734–738 (2006).
17 Z. Xu, G. Owens, D. Gordon, C. Cain, A. Ludomirsky, “Noninvasive creation of an atrial septal defect by histotripsy in a canine model,” Circulation 121, 742–749 (2011).
18 T. D. Khokhlova, J. Simon, Y-N. Wang, V. A. Khokhlova, M. Praun, F. Starr, P. Kaczkowski, L. A. Crum, J-H. Hwang, M. R. Bailey, “In vivo tissue emulsification using millisecond boiling induced by high intensity focused ultrasound,” J. Acoust. Soc. Am. 129, 2477(A) (2011).
19 M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, “Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and mod- eling approach,” J. Acoust. Soc. Am. 124(4), 2406–2420 (2008).
20 H. N. V. Temperley, “The behaviour of water under hydrostatic tension: III,” Proc. Phys. Soc. 59, 199–208 (1947).
21 J. Fisher, “The fracture of liquids,” J. Appl. Phys. 19, 1062–1067 (1948).
22 J. B. Fowlkes and L. A. Crum, “Cavitation threshold measure- ments for microsecond length pulses of ultrasound,” J. Acoust. Soc. Am. 83, 2190–2201 (1988).
23 A. J. Coleman, T. Kodama, M. J. Choi, T. Adams, J. E. Saunders, “The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: Preliminary measurements based on a study of clinical lithotripsy,” Ultrasound Med. Biol. 21, 405–417 (1995).
24 R. E. Apfel and C. K. Holland, “Gauging the likelihood of cavita- tion from short-pulse, low-duty cycle diagnostic ultrasound,” Ultrasound Med. Biol. 17, 179–185 (1991).
25 E. N. Harvey, D. K. Barnes, W. D. McElroy, A. H. Whiteley, D. C. Pease, and K. W. Cooper, “Bubble formation in animals. I. Physical factors,” J.Cell. Comp. Physiol. 24, 1–22 (1944).
26 A. D. Maxwell, T-Y. Wang, C. A. Cain, J. B. Fowlkes, O. A. Sapozhnikov, M. R. Bailey, and Z. Xu, “Cavitation clouds creat- ed by shock scattering from bubbles during histotripsy,” J.
Acoust. Soc. Am. 130, 1888–1898 (2011).
27 V. C. Anderson, “Sound scattering from a fluid sphere,” J.
Acoust. Soc. Am. 22, 426–431 (1950).
28 A. D. Maxwell, C. A. Cain, J. B. Fowlkes, and Z. Xu, “Inception
of cavitation clouds by scattered shockwaves,” 2010 IEEE International Ultrasonics Symposium (IUS) (11–14 October 2010, San Diego, CA) pp. 108–111.
29 T-Y. Wang, Z. Xu, T. L. Hall, J. B. Fowlkes, C. A. Cain, “An effi- cient treatment strategy for histotripsy by removing cavitation memory,” Ultrasound Med. Biol. 38, 753–766 (2012).
30 Z. Xu, Z. Fan, T. L. Hall, F. Winterroth, J. B. Fowlkes, C. A. Cain, “Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy – histotripsy,” Ultrasound Med. Biol. 35, 245–255 (2009).
31 E. A. Filonenko and V. A. Khokhlova, “Effect of acoustic non- linearity on heating of biological tissue induced by high intensi- ty focused ultrasound,” Acoust. Phys. 47(4), 468–475 (2001).
32 M. F. Hamilton and D. T. Blackstock, (eds.) Nonlinear Acoustics (Acoustical Society of America, Melville, NY, 1998).
33 O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, “Focusing of high power ultrasound beams and limiting values of shock wave parameters,” Acoust. Phys. 55(4–5), 463–473 (2009).
34 Y-N. Wang, T. Khokhlova, M. Bailey, J. H. Hwang, V. Khokhlova, “Histological and biochemical analysis of mechan- ical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound,” Ultrasound Med. Biol. Accepted (2012)
35 C. Thomas, C. Farny, T. Wu, R. Holt, and R. Roy, “Monitoring HIFU lesion formation in vitro via the driving voltage,” Therapeutic Ultrasound: 5th Int. Symp. on Therapeutic Ultrasound, edited by G. Clement, N. McDannold, and K. Hynynen (American Institute of Physics, Melville, NY) pp. 293–297 (2006).
36 O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, “Ultrasonic atomization on the tissue-bubble interface as a possible mecha- nism of tissue erosion in histotripsy,” J. Acoust. Soc. Am. 129, 2478 (A) (2011).
37 J. Simon, O. A. Sapozhnikov, V. A. Khokhlova, T. D. Khokhlova, M. R. Bailey, L. A. Crum, “Miniature acoustic fountain mecha- nism for tissue emulsification during millisecond boiling in high intensity focused ultrasound fields,” J. Acoust. Soc. Am. 129, 2478 (A) (2011)
38 R. Wood and A. Loomis “Physical and biological effects of high- frequency sound-waves of great intensity,” Phil. Mag. 4, 417–436 (1927).
39 L. Rozenberg (ed.), Physical Principles of Ultrasonic Technology, Vol. 2 (Plenum, New York, 1973) pp. 4–88.
40 J. C. Simon, O. A. Sapozhnikov, V. A. Khokhlova, Y-N. Wang, L. A. Crum, and M. R. Bailey, “Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultra- sound,” Phys. Med. Biol. 57, 8061–8078 (2012).
41 D. E. Yount, “Skins of varying permeability: A stabilization mechanism for gas cavitation nuclei,” J. Acoust. Soc. Am. 65, 1429–1439 (1979).
34 Acoustics Today, October 2012