Page 29 - 2017Spring
P. 29

Allman, J. M. (1999). Evolving Brains. Scientific American Library, New York. Brownell, W. E. (1982). Cochlear transduction: An integrative model and
review. Hearing Research 6, 335-360.
Brownell, W. E. (1983). Observation on a motile response in isolated hair
cells. In Webster, W. R., and Aiken, L. M. (Eds.), Mechanisms of Hearing.
Monash University Press, Melbourne, VIC, Australia, pp. 5-10.
Brownell, W. E. (1990). Outer hair cell electromotility and otoacoustic emis-
sions. Ear and Hearing 11, 82-92.
Brownell, W. E., Manis, P. B., Zidanic, M., and Spirou, G. A. (1983). Acous-
tically evoked radial current densities in scala tympani. The Journal of the
Acoustical Society of America 74, 792-800.
Brownell, W. E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y. (1985).
Evoked mechanical responses of isolated cochlear outer hair cells. Science
227, 194-196.
Corti, A. (1851). Recherches sur l'organe de l'ouïe des mammifères.
Zeitschrift für wissenschaftlicke Zoologie 3, 109-169.
Cotugno, D. (1775). De Aquaeductibus Auris Humanae Internae Anatomica Dis-
sertation. Typographia Sanctae Tomae Aquinatis, Neopoli et Bononiae. Frank, G., Hemmert, W., and Gummer, A. W. (1999). Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Pro- ceedings of the National Academy of Sciences of the United States of America
96, 4420-4425.
Gao, S. S., Wang, R., Raphael, P. D., Moayedi, Y., Groves, A. K., Zuo, J., Ap-
plegate, B. E., and Oghalai, J. S. (2014). Vibration of the organ of Corti within the cochlear apex in mice. Journal of Neurophysiology, 112, 1192- 1204.
Gold, T. (1948). Hearing. II. The physical basis of the action of the cochlea. Proceedings of the Royal Society B Biological Sciences 135, 492-498.
Harris, G. G., Frishkopf, L. S., and Flock, A. (1970). Receptor potentials from hair cells of the lateral line. Science 167, 76-79.
Johnstone, B. M., and Boyle, A. J. (1967). Basilar membrane vibration ex- amined with the Mossbauer technique. Science 158, 389-390.
Kemp, D. T. (1978). Stimulated acoustic emissions from within the human audi- tory system. The Journal of the Acoustical Society of America 64, 1386-1391.
Kemp, D. T. (2008). Otoacoustic emissions: Concepts and origins. In Man- ley, G. A., Popper, A. N., and Fay, R. R. (Eds.), Active Processes and Oto- acoustic Emissions. Springer-Verlag, New York, pp. 1-38.
Khanna, S. M., and Leonard, D. G. (1982). Basilar membrane tuning in the cat cochlea. Science 215, 305-306.
Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). Dis- charge Patterns of Single Fibers in the Cat's Auditory Nerve. MIT Press, Cambridge, MA.
Liberman, M. C., Gao, J., He, D. Z., Wu, X., Jia, S., and Zuo, J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300-304.
Manis, P. B., and Brownell, W. E. (1983). Synaptic organization of eighth nerve afferents to cat dorsal cochlear nucleus. Journal of Neurophysiology 50, 1156-1181.
Oghalai, J. S., Patel, A. A., Nakagawa, T., and Brownell, W. E. (1998). Fluo- rescence-imaged microdeformation of the outer hair cell lateral wall. Jour- nal of Neuroscience 18, 48-58.
Rajagopalan, L., Patel, N., Madabushi, S., Goddard, J. A., Anjan, V., Lin, F., Shope, C., Farrell, B., Lichtarge, O., Davidson, A. L., Brownell, W. E., and
Pereira, F. A. (2006). Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis. Journal of Neu- roscience 26, 12727-12734.
Rajagopalan, L., Greeson, J. N., Xia, A., Liu, H., Sturm, A., Raphael, R. M., Davidson, A. L., Oghalai, J. S., Pereira, F. A., and Brownell, W. E. (2007). Tuning of the outer hair cell motor by membrane cholesterol. Journal of Biological Chemistry 282, 36659-36670.
Ren, T., He, W., and Kemp, D. (2016). Reticular lamina and basilar mem- brane vibrations in living mouse cochleae. Proceedings of the National Academy of Sciences of the United States of America 113, 9910-9915.
Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. The Journal of the Acoustical Society of America 49, 1218-1231.
Santos-Sacchi, J. (1991). Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. Journal of Neuroscience 11, 3096- 3110.
Santos-Sacchi, J., and Dilger, J. P. (1988). Whole cell currents and mechani- cal responses of isolated outer hair cells. Hearing Research 35, 143-150.
Shehata, W. E., Brownell, W. E., and Dieler, R. (1991). Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngology 111, 707-718.
Spoendlin, H. (1966). The organization of the cochlear receptor. Fortschr Hals Nasen Ohrenheilkd 13, 1-227.
von Békésy, G. (1960). Experiments in Hearing (Translated by E. G. Wever). McGraw-Hill Book Company, New York.
Wersäll, J., Flock, A., and Lundquist, P. G. (1965). Structural basis for direc- tional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symposium on Quantitative Biology 30, 115-132.
Zhang, R., Qian, F., Rajagopalan, L., Pereira, F. A., Brownell, W. E., and An- vari, B. (2007). Prestin modulates mechanics and electromechanical force of the plasma membrane. Biophysical Journal 93, L07-L09.
Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., and Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149-155.
Zidanic, M., and Brownell, W. E. (1990). Fine structure of the intracochlear potential field. I. The silent current. Biophysical Journal 57, 1253-1268.
Supplementary Material
The first video recording of outer hair cell electromotility recorded on a VCR in April 1983 is presented at A glass pipette electrode has been positioned at the basal end of one of the OHCs in a cluster of OHCs joined together at their apex. The pipette is the sharply conical object pointing up from the bottom of the field of view. The audio indicates the presentation of an extracellular electrical pulse. After a few pulses the stimulated cell begins to shorten with sufficient force to move the entire cluster. There is a progressive cell shortening with repeated stimulation. The evoked movements are large enough to damage the cell and it undergoes a volume increase from water influx. Note the sudden lengthening about 2/3 of the way through the video. This is due to a volume decrease after which the cell fails to respond to electrical stimula- tion because of the loss of internal hydrostatic (turgor) pressure.
Two other videos of OHC electromotility in response to musical record- ings are available on line at and
  Spring 2017 | Acoustics Today | 27

   27   28   29   30   31