Page 31 - Fall_DTF
P. 31

they each play in human perception. Studies have confirmed 2003 and 3711 Sound Qlmlib’ 5,V'"P°5h4"'- SQS 2003. Dearbom» M1» NY

the viability of using  outdoor metric to predict human  PWMCCMW, D_ A“ and

FESPOHSE md°0fS 1195?“? dlfiefences 1“ “'59 C1059 “‘d°°'5‘ brown, s.A. (2002). Summary ofrecent NASA studies othuman response

Results indicate that low sonic booms, or sonic thumps, to sonic booms. The Iournal of the Acoustical Society of America 111(1),

are much less annoying than conventional sonic booms, 5“'599- h“P51/M05-"YE/10-1 121/1-1371751

ahhough mnowme levels med to be Confirmed Wm‘ Loubeau, A. (2013). Community response to low-amplitude sonic

_ _ booms. Proceedings of Meetings on Acoustics 19, 040048. https://doi.

C°""““““Y testmfi org/10.1121/1.4799997.

Laboratory test results have been used in meta-analyses figbeml’ A" (zliilg EVa1.“a:°n M3; efim of “mm we 0." mdm." an‘

yance cause y somc ooms. e Iournal of the Acoustical Society of

to ewluate candidate noise metrics, and six metrics are America 136(4), 2223. https://doi.org/10.1 121/1.4900073.

recommended for further consideration in development of 1-0\Il>ea\I»A- (2019)- Evalllatifln Ofthe 8566‘ Ofaimafi Size 0“ W100’ 3|““’Y'

a new sonic boom noise Cemficmon stmdmi This subset ance caused by sonic booms and rattle noise. The 1oar-nal ojrhe Acoustical

_ _ _ _ society o]Amer1ca 143(3), 1936. https://dotorg/10.1121/1.4922535.

of metrics wlllbe used in future analyses ofcommunity field Lmlbem A” Nam Y“ Cook B_ G__ Spmlm V w__ and Mmgmsmn)

data using a purpose-built low-boom flight demonstrator. 1. M. (2015). A new evaluation of noise metrics for sonic booms us-

Presein efforts at  are geared (award Preparations  existing data. AIP Conference Proceedings 1685, 090015. https://doi.

for testing and further development of test methods for  L and K105, L (2013a)_ Evalmmm Rf an in_

gathering hoth the Estimated noise 9XP°5“f€ and the human door sonic boom subjective test tacility at NAsA Iangley Research
annoyance data. Center. Proceedings of Meeting: on Acoustics 12, 040007. https://doi.

orgI10.1121/1.4810766.
Loubeau, A., Rathsam, 1., and Klos, 1. (2013b). Laboratory study or outdoor

H9f9"9"'=33 and indoor annoyance caused by sonic booms from sub-scale aircraft.

  The Iournal of the Acoustical Society ofAmerica 134(5), 4220. https://doi.

Borsky, P. N. (1965). Community Reactions to Sonic Boom: in the Oklahoma orgI10.1121/1.4831497.
city Area: vol. 2: Data on Community Reactions and Interpretations. Tech- Loubeau, A., Sullivan, B. M., Klos, 1., Rathsam, 1., and Gavin, 1. R. (2013c).
nical Report AMRL-TR-65-37, Aerospace Medical Research Laboratories, Laboratory Headphone studies o]Human Response to Low-Amplitude sonic
Wright-Patterson Air Force Base, Dayton, OH. Booms andRattle Hmrdlndoors. Technical Report NASA/TM-2013-217975,

Busch, (1., Tai, 1., Mavris, D., Ducas, R., and Mohan, R. (2017). Sensitivity National Aeronautitx and Space Administration, Washington, DC.
analysis oi supersonic Mach cut-oif night, The Iournal of the Acoustical Maglieri, D. 1., Bobbitt, P. 1., Plotkin, K. 1., shepherd, K. P., Coen, P. G.,
Society o]America 141(5), 3565. https://doi.org/10.1121/1.4987567. and Richwine, D. M. (2014). Sonic Boom: Six Decades o]Research. Report

Carr, D., and Davies, P. (2015). An investigation into the effect of playback NASA/SP-2014-622, National Aeronautics and Space Administration,
environment on perception ofsonic booms when heard indoors. AIP Con- washington, DC.
ference Proceedings 1685, 090013. https://doi.org/10.1063/1.4934479. Marshall, A., and Davies, P. (2011). Metrics including time-varying loud-

cliatt, L. 1., 11, Hill, M. A., and Haering, E. A. 1r. (2016). Mach cutoifanaly- ness models to assess the impact of sonic booms and other transient
sis and results from NASAE tariield investigation of no-boom thresholds sounds. Noise Control Engineering Iournal 59(6), 681-697. https://doi.
(AIAA 2016-3011). Proceedings o]22ndAIAA/CEAS Aeroacoustics Confer- orgI10.3397/1.3628523.
ence, American Institute oi Aeronautics and Astronautics, Lyon France, Marshall, A. 1., and Davies, P. (2012). Effect oi long-term time-varying
May 30- 1une 1, 2016, pp. 4793-4915. loudness and duration on subjects’ ratings of startle evoked by shaped

DeGolia, 1., and Loubeau, A. (2017). A multiple-criteria decision analysis to sonic booms and impulsive sounds. INTER-NOISE and NOISE-CON Con-
evaluate sonic boom noise metritx. The Iournal ojthe Acoustical society of gress and Conference Proceedings, lnterNoisel2, New York, NY. pp. 5610-
America 141, 3624. https://doi.org/10.1121/1.4987784. 5616.

Fidel], 5., Horonjefl, R. D., and Harris, M. (2012). Pilot Test ofa Novel Meth- Matisheck, 1. (2017). The Aerion A52 and Mach cut-oif. The [our-
od for Assessing Community Response to Low-Amplitude sonic Booms. nal of the Acoustical society of America 141(5), 3564. https://doi.
Technical Report NASA/CR-2012-217767, National Aeronautics and orgI10.1121/1.4987565.

Space Administration, Washington, DC. McCurdy, D. A., Brown, S. A., and Hi.l.l.iard, R. D. (2004). Subjective re-

Giacomoni. c., and Davies. P. (2013). A simplified approach to simulating sponse oi people to simulated sonic booms in their homes. The [our-
sonic booms indoors. INTER-NOISE and NOISE-CON Congrms and Con- nal of the Acoustical Society of America 116(3), 1573-1584. https://doi.
ference Proceedings, Denver, CO, pp. 56-64. orgI10.1121/1.1781189.

I-laering, E. A., 1r., Smolka, 1. w., Murray, 1. 13., and Plotkin, K. 1. (2006). Miller, D. M. (2011). Human Response to Low-Amplitude sonic Booms. PhD
Flight demonstration of low overpressure N-wave sonic booms and Thesis, The Pennsylvania State University, state College, PA.
evanescent waves. AIP Conference Proceedings 838, 647. https://doi. Nakaa Y. (2013). Subjective evaluation of loudness of sonic booms indoors
orgI10.1063/1.2210436. and outdoors. Acoustical Science and Technology 34(3), 225-228. https://

Klos,  (2016). Estimates of residential floor vibration induced by sonic doi.orgI10.1250/ast.34.225.
booms. The 1ournal ofthe Acoustical Society ofArnerica 139, 2007. httpszll ortega, N. 1)., Vigeant, M. c., and Sparrow, V’. (2018). Perceptual character-
doi.orgI10.1121/1.4949896. ization of Mach cut-of sonic booms. The fournal ofthe Acoustical Society

Klos, 1., Sullivan, 3. M., and Shepherd, K. P. (2008). Design of an indoor ofAmerica 143(3), 1936. https://doi.org/10.1121/1.5036332.
sonic boom simulator at NASA Langley Research Center. Proceedings of Page, 1. A., l-lodgdon, K., Krecker, P., Cowart, R., l-lobbs, c., Wilmer, c.,
the 23rd National conference on Noise control Engineering NOISE-CON Koening, c., Holmes, T., Gaugler, T., Shumway, D. L., Rosenberger, 1. L.,

Fall 2013 | Acnullzlcl Tnday | es






   29   30   31   32   33