Page 57 - Fall_DTF
P. 57

tion to design patterns for active ultrasound arrays. Because ings 1-‘ (Communications, Radar, and Signal Processing) 127, 9-15.

the power spectrum and the spatial covariance are related lT“i’‘‘//‘l°i'°‘5l 101049’ ‘{’'f'1'198°'0°m' . _

_ _ _ _ _ D1 Martino, G., and lodsce, A. (2015). Coprime synthetic aperture m-
ihiiiiigh 3 Feiiiiei ii3iisf°i'iii- iiiiiiiiPhC3iiVe 3iid iiiiii Pm" dar (CopSAR): A new acquisition mode for maritime surveillance.
cessing can estimate a spatial covariance function (Adhikari IEEE Transactions on Geoscience and Remote Sensing 53(5), 3110-3123.
and Buck 2017; Li“ and Buck, 2017). https://doi.org/10.1109/TGRS.2014.2369035.

Gerstofi, P., Msecklenbrauker, C. F., Seong, W, and Bianca, M. (2018).

Pillai and Haber (1987) describe an intriguing technique for Introduction to compressive sensing in aooustics. The Iournal of

synthesizing an augmented covariance matrix from an esti- th”  “I A"‘”"‘“* 143(6)’ 37313736‘ l‘“P“l/d°"

iiieied e°V3ii3iiCe hiiiei-i°ii deiived fi'°iii 3 siiigle sP3ise 3" 1'1DOr§1/OI’,-R.T.,Bi1d Kassain, 5. A. (1990). The uniiying role oft.he coarrayin
ray. Their approach facilitates high-resolution localization of aperture synthesis for incoherent and coherent imaging. Proceedings of the

more sources than sensors. Vaidyanathan and Pal (2011) and 1:5: 7» 735-751 i:i‘iPsi(/i/ d°i-°iE/ 10- i(109/ 5)-54311 1

Liu and Buck(2016, 2017) extend the augmented covariance like H’;fiD- H-*e“v"‘mg;]§f°s°“I$1D- E 1993 -“"7 5'3"“ """“""i’- Pm‘

3PPi’°3eh fiiiiii 3 siiigie 3ii"=iY i0 the iiiieileeved sP3ise 3ii'3Ys Liu, Y., antlflliiilck, 1. R. (2015). Detecting Gaussian signals in the presence

discussed in this article. of interferers using the coprime sensor arrays with t.he min processor.
_ _ 2015 49th Asilornar conference on Signals, systems, and computers, Pacific

The 3i'iiCles deseiihed 3h°Ve i'ePfeseiii 3 sine” s3iiiP1e Of Grove, CA, November 0-11, 2015, pp. 370-374. https://doi.org/10.1 109/

the current research. For more of the latest results, see ACSSC.20l5.7421150.

the special issue of The Iournal of the Acoustical Society of Li“ Y3’ and B“d‘ 1' R‘ (1.016) S“i’_°"’“°l“‘i°“ DOA °‘‘i’‘”"jl°“ “"5 “

A . 2018) . . . t. coprlme sensor army with the min processor. -2016 50th Asilomar Con-

"“’"" 0"” °“ °°‘“P”55“'° ““5“‘3 “‘ “‘°“5 ‘C5 ference on Signals. systems and computers, Pacific Grove, CA, November
(acousticstodaynorg/compressive-sensing). which has four 5-9, 2015, pp. 944-940. https://doi.org/10.1109/ACSSC.2016.7fl69188.
articles on coprime array processing along with related ar- Lilia Y-» and Buck 1- R- (1017) H-i$h'iesiihi'-i°ii diiee‘i°ii'°f'3ii'i"id es‘-iiii‘i'
ticles on the topic of direction-of-arrival (DOA) estimation fi°n,i" SNR and snapshm ‘h3”°“i_i°“ Menmm “sing mumffmqmncy
_ _ _ coprime armys. 2017 1555 International conference on Acoustics speech,
iisiiig sP3rsiiY Coiisifiiiiis (Geisiofi ei 31-» 2013)~ and signal Processing (ICASSP), New orleans, LA, March 5-9, 2017, pp.
3434-3438. https://doi.org/10.1109/1CASS1l2017.7952794.
Anknawladgmanta Liu, Y., and suck, 1. R. (2015). Gaussian source detection and spat.ial spec-
_ tral estimation using a coprime sensor array with the min processor. 1555

This Wiiik Ws siiPP°i’ied hY Ofliee ‘if N3V31 Rese3i’Ch (ONR) Transactions on signal Processing 55(1), 155- 199. https://doi.org/10.1109/

Awards N0000014- 13- 1-0229 and N00014-17-2734. Kath- 'l'sP.2017.27522s4.

lee“ E_ wage thanks professor John R_ Buck and ML Va“, M.itm, S. K.,Monda1,K.,Tchobanon,M. K., and Dolecek,G.I. (2010). Gen-

hav Chawlj for many useful discussions and the University ml Pdynomal £'€.t°"m'°"'bmd. dmg" of ‘Prim Pwodlc hm“ “-

mys.1555 Transactions on Ultrasonics Ferroelectrics, and Frequency con-
°f Rh°de Isiiiid Oeeeii Eiigiiieeiiiig DeP3ftiiii’-iii {Oi hosiiiig M71 57, 1952-1955. https://doi.org/10.1109/TUFFC.2010.1643.

her recent sabbatical. Pal, P., and Vaidyanathana P. P. (2010), Nested arrays: A novel approach

to array processing with enhanced degrees or ireedom. 1555 Transac-
tions on Signal Processing 58(8), 4167-4181. https://doi.org/10.1109/

References TsP.2010.2049254.

  Pedinotf, M., and Ksienski, A. (1952). Multiple target response of data-

Adhilrari, K., and suck, 1. R. (2017). spatial spectral estimation with prod- processing antennas. 1125 Transactions on Antennas and Propagation 10,
uct processing of a pair of colinear arrays. IEEE Transactions on Signal 112-126. https://doi.org/10.1109/TAR19621137837.

Processing 65, 2389-2401.https://doi.org/10.1109/TSR20172659642. Pillai, S. U., and Haber, F. (1987). Statistical analysis ofa high resolution spa-

Adhikari, K., Buck, 1. 11., and wage, K. 5. (2014). Extending coprime sensor tial spectrum estimator utilizing an augmented covariance matrix. 1555
arrays to achieve the peak side lobe height of a toll uniform linear army Transactions on Acoustics, speech. and signal Processing 35, 1517-1523.
E1/RASIP]ournal on Advances in Signal Processing 201, 1-17. https://doi. lmps://doi.org/10.1109/TASS1l1987.1165068.
org/10.1186/1687-6180-2014-148. Ryle, M. (1952). A new radio interferometer and its application to the

Berman, A., and clay, c. 5. (1957). Theory of time-averaged-product observation of weak radio stars. Proceedings oftlte Royal society ofLon-
armys. The Iournal of the Acoustical Society of America 2, 805-812. dun A: Mathematical, Physical and Engineering Sciences 211, 351-375.
https://doi.org/10.1121/1.1909060. htips://doi.org/10.1098/rspa.l952.0047.

Chavali, V'. (2017). Coprime and Nested Processing of the Elba bland Sonar Shaw, E., and Davies, D. E. N. (1964). Theoretical and experimental stud-
Data Set. MS Thesis. George Mason University, Fairfax, VA. https://doi. ies of the resolution performance of mu.ltipl.icatiVe and additive aerial ar-
org/10.13021/G8IXOVV. mys. Radio and Electronic Engineer 28, 317-324. https://doi.org/10.1049/

Chavali, V'., Wage, K. E., and Buck,  R. (2014). Coprime processing for the ree.1964.0136.

Elba island sonar data set. 2014 48th Asilornar Conference on Signak, Sys- Vaidyanathan, P. P., and Pal, P. (2011). Sparse sensing with co-prime sam-
zems, and computers, Pacific Grove, CA, November 2-5, 2014, pp. 1554. pleis and arrays. 1555 Transactions on Signal Processing 59, 573-505.
1868. ht\ps://doi.org/10.1109/ACSSC.2014.709479l. htips://doi.org/10.1109/ACSSC.2010.5757766.

Davies, D. E. N., and Ward, C. R. (1980). Low sidelobe patterns Van Trees, H. L. (2002). Optimum Array Processing. lohn Wiley Er Sons,
from thinned arrays using multiplicative processing. 155 Proceed. Inc, New York.

Fall 2015 | Acoustic: Today | 5:






   55   56   57   58   59