Page 43 - Summer 2018
P. 43

Hoffmeister, B. K., Whitten, S. A., Kaste, S. C., and Rho, J. Y. (2002). Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone. Osteoporosis International 13, 26-32.
Hoffmeister, B. K., Whitten, S. A., and Rho, J. Y. (2000). Low-megahertz ultrasonic properties of bovine cancellous bone. Bone 26, 635-642.
Hosokawa, A., and Otani, T. (1997). Ultrasonic wave propagation in bovine can- cellous bone. The Journal of the Acoustical Society of America 101, 558-562.
Johnell, O., and Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Interna- tional 17, 1726-1733.
Karjalainen, J. P., Riekkinen, O., Toyras, J., Jurvelin, J. S., and Kröger, H. (2016). New method for point-of-care osteoporosis screening and diag- nostics. Osteoporosis International 27, 971-977.
Knapp, K. M., Blake, G. M., Fogelman, I., Doyle, D. V., and Spector, T. D. (2002). Multisite quantitative ultrasound: Colles’ fracture discrimination in postmenopausal women. Osteoporosis International 13, 474-479.
Krieg, M., Barkmann, R., Gonnelli, S., Stewart, A., Bauer, D. C., Barquero, L. D. R., Kaufman, J. J., Lorenc, R., Miller, P. D., Olszynski, W. P., Poiana, C., Schott, A.-M., Lewiecki,, E. M., and Hans, D. (2008). Quantitative ultra- sound in the management of osteoporosis: The 2007 ISCD official posi- tions. Journal of Clinical Densitometry 11, 163-187.
Langton, C. M., Palmer, S. B., and Porter, R. W. (1984). The measurement of broadband ultrasonic attenuation in cancellous bone. Engineering In Medicine 13, 89-91.
Langton, C. M., Njeh, C. F., Hodgskinson, R., and Currey, J. D. (1996). Pre- diction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone 18, 495-503.
Laugier, P., Fournier, B., and Berger, G. (1996). Ultrasound parametric im- aging of the calcaneus: In vivo results with a new device. Calcified Tissue International 58, 326-331.
Lee, L. I., Roh, H., and Yoon, S. W. (2003). Acoustic wave propagation in bovine cancellous bone: Application of the modified Biot-Attenborough model. The Journal of the Acoustical Society of America 114, 2284-2293.
Mano, O., Horii, K., Hagino, H., Miki, T., Matsukawa, M., and Otani, T. (2015). Estimation of in vivo cortical bone thickness using ultrasonic waves. Journal of Medical Ultrasonics 42, 315-322. s10396-015-0617-5.
Minonzio, J. G., Bochud, N., Vallet, Q., Ramiandrisoa, D., Etcheto, A., Briot, K., Kolta, S., Roux, C., and Laugier, P. (2017). Fracture discrimination us- ing cortical thickness and porosity index obtained with ultrasound. Jour- nal of Bone and Mineral Research 32, S245.
Minonzio, J. G., Talmant, M., and Laugier, P. (2010). Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. The Journal of the Acoustical Society of America 127, 2913-2919.
Moilanen, P., Nicholson, P. H. F., Kilappa, V., Cheng S., and Timonen, J. (2007). Assessment of the cortical bone thickness using ultrasonic guided waves: Mod- elling and in vitro study. Ultrasound in Medicine and Biology 33, 254-262.
Moreau, L., Minonzio, J. G., Foiret, J., Bossy, E., Talmant, M., and Laugier, P. (2014). Accurate measurement of guided modes in a plate using a bidirectional approach. The Journal of the Acoustical Society of America 135, EL15-EL21.
National Osteoporosis Foundation. (2018). What is osteoporosis and what causes it? Available at, Accessed February 1, 2018.
Nicholson, P. H., Moilanen, P., Kärkkäinen, T., Timonen, J., and Cheng, S. (2002) Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application. Physiological Measurements 23, 755-768.
Otani, T., Mano, I., Tsujimoto, T., Yamamoto, T., Teshima, R., and Naka, H. (2009). Estimation of in vivo cancellous bone elasticity. Japanese Journal of Applied Physics 48, 07GK05
Raum, K. (2008). Microelastic imaging of bone. IEEE Transactions on Ultra- sonics, Ferroelectrics, and Frequency Control 55, 1417-1431.
Roux, C., Roberjot, V., Porcher, R., Kolta, S., Dougados, M., and Laugier, P. (2001). Ultrasonic backscatter and transmission parameters at the os calcis in postmeno- pausal osteoporosis. Journal of Bone and Mineral Research 16, 1353-1362.
Sarvazyan, A., Tatarinov, A., Egorov, V., Airapetian, S., Kurtenok, V., and Gatt, C. J., Jr. (2009). Application of the dual-frequency ultrasonometer for osteoporosis detection. Ultrasonics 49, 331-337.
Stein, E. M., Rosete, F., Young, P., Kamanda-Kosseh, M., McMahon, D. J., Luo, G., Kaufman, J. J., Shane, E., and, Siffert, R. S. (2013). Clinical assess- ment of the 1/3 radius using a new desktop ultrasonic bone densitometer. Ultrasound in Medicine and Biology 39, 388-395.
Talmant, M., Foiret, J., and Minonzio, J. G. (2011) Guided waves in cortical bone. In Laugier, P., and Haïat, G. (Eds.), Bone Quantitative Ultrasound. Springer Netherlands, Dordrecht, pp. 147-179.
Tatarinov, A. M., Dubonos, S. L., Ianson, K. A., Oganov, V. S., Dzenis, V. V., and Rakhmanov, A. S. (1990) Ultrasonic diagnosis of the changes in human tibia during 370-day antiorthostatic hypokinesia. Kosm Biol Avia- kosm Med (Space Biology and Aerospace Medicine) 24, 29-31.
US Preventive Services Task Force. (2011). Screening for osteoporosis: US Preventive Services Task Force recommendation statement. Annals of In- ternal Medicine 154, 356-364.
Vallet, Q., Bochud, N., Chappard, C., Laugier, P., and Minonzio, J. G. (2016). In vivo characterization of cortical bone using guided waves measured by axial transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63, 1361-1371.
Wear, K. A. (1999). Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment. The Journal of the Acous- tical Society of America 106, 3659-3664.
Wear, K. A. (2000). The effects of frequency-dependent attenuation and dispersion on sound speed measurements: Applications in human trabecular bone. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 47, 265-273.
Wear, K. A. (2003). Autocorrelation and cepstral methods for measurement of tibial cortical thickness. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50, 655-660.
Wear, K. A., and Armstrong, D. W. (2001). Relationships among calcaneal back- scatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women. The Journal of the Acoustical Society of America 110, 573-578.
Wear, K. A., and Garra, B. S. (1998). Assessment of bone density using ul- trasonic backscatter. Ultrasound in Medicine and Biology 24, 689-695.
Wear, K. A., and Laib, A. (2003). The dependence of ultrasonic backscatter on tra- becular thickness in human calcaneus: Theoretical and experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50, 979-986.
Williams, J. L. (1992). Ultrasonic wave propagation in cancellous and corti- cal bone: Predication of some experimental results by Biot’s theory. The Journal of the Acoustical Society of America 91, 1106-1112.
Wright, N. C., Looker, A. C., Saag, K. G., Curtis, J. R., Delzell, E. S., Randall, S., and Dawson‐Hughes, B. (2014). The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. Journal of Bone and Mineral Research 29, 2520-2526.
Zagzebski, J. A., Rossman, P. J., Mesina, C., Mazess, R. B., and Madsen, E. L. (1991). Ultrasound transmission measurements through the os calcis. Calcified Tissue International 49, 107-111.
Summer 2018 | Acoustics Today | 41

   41   42   43   44   45