Page 19 - Winter2018
P. 19

Billings, C. J., Papesh, M. A., Penman, T. M., Baltzell, L. S., and Gallun, F. J. (2012). Clinical use of aided cortical auditory evoked potentials as a measure of physiological detection or physiological discrim- ination. International Journal of Otolaryngology 2012, 365752. https://doi.org/10.1155/2012/365752.
Brownell, W. E. (2017). What is electromotility? - The history of its discov- ery and its relevance to acoustics. Acoustics Today 13(1), 20-27.
Caspary, D. M., Hughes, L. F., and Ling, L. L. (2013). Age-related GABAA receptor changes in rat auditory cortex. Neurobiology of Aging 34(5), 1486- 1496. http://doi.org/10.1016/j.neurobiolaging.2012.11.009.
Das, N., Van Eyndhoven, S., Francart, T., and Bertrand, A. (2016). Adaptive attention-driven speech enhancement for EEG-informed hearing prosthe- ses. Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, August 16-20, 2016, pp. 77-80. https://doi.org/10.1109/embc.2016.7590644.
Ding, N., and Simon, J. Z. (2012). Emergence of neural encoding of audi- tory objects while listening to competing speakers. Proceedings of the Na- tional Academy of Sciences of the United States of America 109(29), 11854- 11859. https://doi.org/10.1073/pnas.1205381109.
Dubno, J. R., Dirks, D., and Morgan, D. (1984). Effects of age and mild hear- ing loss on speech recognition in noise. The Journal of the Acoustical Soci- ety of America 76, 87-96.
Dubno, J. R., Eckert, M. A., Lee, F. S., Matthews, L. J., and Schmiedt, R. A. (2013). Classifying human audiometric phenotypes of age-related hearing loss from animal models. Journal of the Association for Research in Otolar- yngology 14(5), 687-701. https://doi.org/10.1007/s10162-013-0396-x.
Easwar, V., Purcell, D. W., Aiken, S. J., Parsa, V., and Scollie, S. D. (2015). Evaluation of speech-evoked envelope following responses as an objec- tive aided outcome measure: Effect of stimulus level, bandwidth, and amplification in adults with hearing loss. Ear and Hearing 36(6), 635- 652. https://doi.org/10.1097/aud.0000000000000199.
Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudana- gunta, S. P., Borland, M. S., and Kilgard, M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature 470(7332), 101-104. Avail- able at https://www.nature.com/articles/nature09656.
Florentine, M., Buus, S., Scharf, B., and Zwicker, E. (1980). Frequen- cy selectivity in normally-hearing and hearing-impaired observers. Journal of Speech, Language, and Hearing Research 23(3), 646-669. https://doi.org/10.1044/jshr.2303.646.
Gatehouse, S., and Noble, W. (2004). The speech, spatial and qualities of hearing scale (SSQ). International Journal of Audiology 43, 85-99.
Gordon-Salant, S., Yeni-Komshian, G., and Fitzgibbons, P. (2008). The role of temporal cues in word identification by younger and older adults: Ef- fects of sentence context. The Journal of the Acoustical Society of America 124(5), 3249-3260. https://doi.org/10.1121/1.2982409.
Guinan, J. J., Jr. (2006). Olivocochlear efferents: Anatomy, physiology, func- tion, and the measurement of efferent effects in humans. Ear and Hearing 27(6), 589-607. https://doi.org/10.1097/01.aud.0000240507.83072.e7.
Jenkins, K. A., Fodor, C., Presacco, A., and Anderson, S. (2017). Effects of amplification on neural phase locking, amplitude, and latency to a speech syllable. Ear and Hearing 39(4), 810-824. https://doi.org/10.1097/ aud.0000000000000538.
Karawani, H., Jenkins, K., and Anderson, S. (2018). Restoration of sensory input may improve cognitive and neural function. Neuropsychologia 114, 203-213. https://doi.org/10.1016/j.neuropsychologia.2018.04.041.
Kidd, G., Favrot, S., Desloge, J. G., Streeter, T. M., and Mason, C. R. (2013). Design and preliminary testing of a visually guided hearing aid. The Journal of the Acoustical Society of America 133(3), EL202-EL207.
https://doi.org/10.1121/1.4791710.
Killion, M., Niquette, P., Gudmundsen, G., Revit, L., and Banerjee, S.
(2004). Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired lis- teners. The Journal of the Acoustical Society of America 116, 2395-2405. https://doi.org/10.1121/1.1784440.
Kuchinsky, S. E., Vaden, K. I., Jr., Ahlstrom, J. B., Cute, S. L., Humes, L. E., Dubno, J. R., and Eckert, M. A. (2016). Task-related vigilance dur- ing word recognition in noise for older adults with hearing loss. Ex- perimental Aging Research 42(1), 50-66. https://doi.org/10.1080/036107 3x.2016.1108712.
Lin, F. R., Yaffe, K., Xia, J., Xue, Q.-L., Harris, T. B., Purchase-Helzner, E., Satterfield, S., Ayonayon, H. N., Ferrucci, L., Simonsick, E. M., and Health ABC Study Group F. (2013). Hearing loss and cognitive decline in older adults. JAMA Internal Medicine 173(4), 293-299. https://doi.org/10.1001/ jamainternmed.2013.1868.
Lonsbury-Martin, B. L., Stagner, B. B., and Martin, G. K. (2017). Oto- acoustic emissions: Can laboratory research improve their clinical utility? Acoustics Today 13(3), 44-51.
O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn- Cunningham, B. G., Shinn-Cunningham, B. G., Slaney, M., Shamma, S. A., and Lalor, E. C. (2015). Attentional selection in a cocktail party en- vironment can be decoded from single-trial EEG. Cerebral Cortex 25(7), 1697-1706. https://doi.org/10.1093/cercor/bht355.
Pichora-Fuller, M. K. (2003). Cognitive aging and auditory information processing. International Journal of Audiology 42, 26-32.
Presacco, A., Simon, J. Z., and Anderson, S. (2016). Evidence of degrad- ed representation of speech in noise, in the aging midbrain and cortex. Journal of Neurophysiology 116(5), 2346-2355. https://doi.org/10.1152/ jn.00372.2016.
Saunders, G. H., Smith, S. L., Chisolm, T. H., Frederick, M. T., McArdle, R. A., and Wilson, R. H. (2016). A randomized control trial: Supple- menting hearing aid use with listening and communication enhance- ment (LACE) auditory training. Ear and Hearing 37(4), 381-396. https://doi.org/10.1097/aud.0000000000000283.
Schaette, R., and McAlpine, D. (2011). Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. The Journal of Neuroscience 31(38), 13452- 13457. https://doi.org/10.1523/ JNEUROSCI.2156-11.2011.
Sergeyenko, Y., Lall, K., Liberman, M. C., and Kujawa, S. G. (2013). Age- related cochlear synaptopathy: An early-onset contributor to auditory functional decline. The Journal of Neuroscience 33(34), 13686-13694. https://doi.org/10.1523/jneurosci.1783-13.2013.
Souza, P., Boike, K., Witherell, K., and Tremblay, K. (2007). Prediction of speech recognition from audibility in older listeners with hearing loss: ef- fects of age, amplification, and background noise. Journal of the American Academy of Audiology 18, 54-65. https://doi.org/10.3766/jaaa.18.1.5.
Vaden, K. I., Jr., Matthews, L. J., Eckert, M. A., and Dubno, J. R. (2017). Lon- gitudinal changes in audiometric phenotypes of age-related hearing loss. Journal of the Association for Research in Otolaryngology 18(2), 371-385. https://doi.org/10.1007/s10162-016-0596-2.
Willott, J. F. (1991). Central physiological correlates of ageing and presbycusis in mice. Acta Oto-Laryngologica 111(s476), 153-156. https://doi.org/10.3109/00016489109127271.
Wilson, R. H., Carnell, C. S., and Cleghorn, A. L. (2007). The Words-in- Noise (WIN) test with multitalker babble and speech-spectrum noise maskers. Journal of the American Academy of Audiology 18(6), 522-529. https://doi.org/10.3766/jaaa.18.6.7.
Winter 2018 | Acoustics Today | 17


































































   17   18   19   20   21