Page 28 - Spring2019
P. 28

Theracoustic Cavitation
contributed to this area of research and to the broader thera- peutic ultrasound and “theracoustic” cavitation community for its transformative ethos and collaborative spirit.
References
Ainslie, M. A., and Leighton, T. G. (2011). Review of scattering and ex- tinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. The Journal of the Acoustical Society of America 130, 3184-3208. https://doi.org/10.1121/1.3628321.
Arvanitis, C. D., Bazan-Peregrino, M., Rifai, B., Seymour, L. W., and Cous- sios, C. C. (2011). Cavitation-enhanced extravasation for drug delivery. Ultrasound in Medicine & Biology 37, 1838-1852. https://doi.org/10.1016/j. ultrasmedbio.2011.08.004.
Atchley, A. A., and Prosperetti, A. (1989). The crevice model of bubble nu- cleation. The Journal of the Acoustical Society of America 86, 1065-1084. https://doi.org/10.1121/1.398098.
Bhatnagar, S., Kwan, J. J., Shah, A. R., Coussios, C.-C., and Carlisle, R. C. (2016). Exploitation of sub-micron cavitation nuclei to enhance ultra- sound-mediated transdermal transport and penetration of vaccines. Jour- nal of Controlled Release 238, 22-30. https://doi.org/10.1002/jps.23971.
Burgess, M., and Porter, T. (2015), On-demand cavitation from bursting droplets, Acoustics Today 11(4), 35-41.
Carlisle, R., Choi, J., Bazan-Peregrino, M., Laga, R., Subr, V., Kostka, L., Ul- brich, K., Coussios, C.-C., and Seymour, L. W. (2013). Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and fo- cused ultrasound. Journal of the National Cancer Institute 105, 1701-1710. https://doi.org/10.1093/Jnci/Djt305.
Coussios, C. C., Farny, C. H., ter Haar, G., and Roy, R. A. (2007). Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). International Journal of Hyper- thermia 23, 105-120. https://doi.org/10.1080/02656730701194131.
Coussios, C. C., and Roy, R. A. (2008). Applications of acoustics and cavitation to non-invasive therapy and drug delivery. Annual Review of Fluid Mechanics 40, 395-420. https://doi.org/10.1146/annurev. fluid.40.111406.102116.
Couture, O., Hingot, V., Heiles, B., Muleki-Seya, P., and Tanter, M. (2018). Ultrasound localization microscopy and super-resolution: A state of the art. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 65, 1304-1320. https://doi.org/10.1109/tuffc.2018.2850811.
Coviello, C., Kozick, R., Choi, J., Gyongy, M., Jensen, C., Smith, P., and Coussios, C. (2015). Passive acoustic mapping utilizing optimal beam- forming in ultrasound therapy monitoring. The Journal of the Acoustical Society of America 137, 2573-2585. https://doi.org/10.1121/1.4916694.
Dowling, A. P., and Ffowcs Williams, J. (1983). Sound and Sources of Sound. Ellis Horwood, Chichester, UK.
Fox, F. E., and Herzfeld, K. F. (1954). Gas bubbles with organic skin as cavi- tation nuclei. The Journal of the Acoustical Society of America 26, 984-989. https://doi.org/10.1121/1.1907466.
Gray, M. D., and Coussios, C. C. (2018). Broadband ultrasonic attenuation estimation and compensation with passive acoustic mapping. IEEE Trans- actions on Ultrasonics Ferroelectrics and Frequency Control 65, 1997-2011. https://doi.org/10.1109/tuffc.2018.2866171.
Haworth, K. J., Bader, K. B., Rich, K. T., Holland, C. K., and Mast, T. D. (2017). Quantitative frequency-domain passive cavitation imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 64, 177- 191. https://doi.org/10.1109/tuffc.2016.2620492.
Hockham, N. (2013). Spatio-Temporal Control of Acoustic Cavitation Dur- ing High-Intensity Focused Ultrasound Therapy. PhD Thesis, University of Oxford, Oxford, UK.
Hockham, N., Coussios, C. C., and Arora, M. (2010). A real-time control-
26 | Acoustics Today | Spring 2019
ler for sustaining thermally relevant acoustic cavitation during ultrasound therapy. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 57, 2685-2694. https://doi.org/10.1109/Tuffc.2010.1742.
Holt, R. G., and Roy, R. A. (2001). Measurements of bubble-enhanced heat- ing from focused, MHz-frequency ultrasound in a tissue-mimicking ma- terial. Ultrasound in Medicine and Biology 27, 1399-1412.
Jensen, C., Cleveland, R., and Coussios, C. (2013). Real-time temperature estimation and monitoring of HIFU ablation through a combined model- ing and passive acoustic mapping approach. Physics in Medicine and Biol- ogy 58, 5833. https://doi.org/10.1088/0031-9155/58/17/5833.
Kennedy, J. E. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews Cancer 5, 321-327. https://doi.org/10.1038/ nrc1591.
Khokhlova, V. A., Fowlkes, J. B., Roberts, W. W., Schade, G. R., Xu, Z., Khokhlova, T. D., Hall, T. L., Maxwell, A. D., Wang, Y. N., and Cain, C. A. (2015). Histotripsy methods in mechanical disintegration of tissue: to- wards clinical applications. International Journal of Hyperthermia 31, 145- 162. https://doi.org/10.3109/02656736.2015.1007538.
Konofagou, E. E. (2017). Trespassing the barrier of the brain with ultra- sound. Acoustics Today 13(4), 21-26.
Kwan, J. J., Graham, S., Myers, R., Carlisle, R., Stride, E., and Coussios, C. C. (2015). Ultrasound-induced inertial cavitation from gas-stabilizing nanoparti- cles. Physical Review E 92, 5. https://doi.org/10.1103/PhysRevE.92.023019.
Leighton, T. G. (1994). The Acoustic Bubble. Academic Press, London, UK. Li, T., Khokhlova, T. D., Sapozhnikov, O. A., O’Donnell, M., and Hwang, J. H. (2014). A new active cavitation mapping technique for pulsed HIFU applications-bubble doppler. IEEE Transactions on Ultrasonics Ferro- electrics and Frequency Control 61, 1698-1708. https://doi.org/10.1109/
tuffc.2014.006502.
Lyon, P. C., Gray, M. D., Mannaris, C., Folkes, L. K., Stratford, M., Campo,
L., Chung, D. Y. F., Scott, S., Anderson, M., Goldin, R., Carlisle, R., Wu, F., Middleton, M. R., Gleeson, F. V., and Coussios, C. C. (2018). Safety and feasibility of ultrasound-triggered targeted drug delivery of doxo- rubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. The Lancet Oncology 19, 1027- 1039.
Marmottant, P., and Hilgenfeldt, S. (2003). Controlled vesicle defor- mation and lysis by single oscillating bubbles. Nature 423, 153-156. https://doi.org/10.1038/nature01613.
Matula, T. J., and Chen, H. (2013). Microbubbles as ultrasound contrast agents. Acoustics Today 9(1), 14-20.
Molinari, M. (2012). Mechanical Fractionation of the Intervertebral Disc. PhD Thesis, University of Oxford, Oxford, UK.
Myers, R., Coviello, C., Erbs, P., Foloppe, J., Rowe, C., Kwan, J., Crake, C., Finn, S., Jackson, E., Balloul, J.-M., Story, C., Coussios, C., and Carlisle, R. (2016). Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Molecular Therapy 24, 1627-1633. https://doi.org/10.1038/ mt.2016.139.
Rapoport, N., Gao, Z. G., and Kennedy, A. (2007). Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute 99, 1095-1106. https://doi.org/10.1093/jnci/djm043.
Rieke, V., and Pauly, K. (2008). MR thermometry. Journal of Magnetic Reso- nance Imaging 27, 376-390. https://doi.org/10.1002/jmri.21265.
Stride, E. P., and Coussios, C. C. (2010). Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224, 171-191. https://doi.org/10.1243/09544119jeim622.
Suslick, K. S. (1990). Sonochemistry. Science 247, 1439-1445. https://doi.org/10.1126/science.247.4949.1439.
ter Haar, G., and Coussios, C. (2007). High intensity focused ultrasound: physical principles and devices. International Journal of Hyperthermia 23, 89-104. https://doi.org/10.1080/02656730601186138.
  


























































   26   27   28   29   30