Page 45 - Summer2019
P. 45

from the measurement data (War et al., 2014). Unfortunately, Konofapu. F. E. (2017). 'l‘mspassing the barrier ofthe brain with ultiaiuuncl
uncenainfies in the sensitivity are typically 6_15% dcPend_ Acaustis Today 13(4), Z1-26.littps.//dui.org/llllll]IATJOI7.11-1.21
. Er d m d g d . an Martin, E.. Ling, Y. T.. and Treeby, B. E. (2015). Simulating focused ultra-
ms 0" =4:-my-_-U = fu=;41= 61> _=1}<= is 11°‘ mm 1 sound transducers using nan. sources on ..,..n. c.ne.nn nu... IEEE
known. which ultimately 11mm the precision of any pressure Tmrxsactioru on Ultrasonics, Fenvzelecti-lei. and Frequency Central 6300),
measurement. These uncertainties should be carefully consid- 1535-1542-
emd when using Expefimmfll data for model vafidamm Man. '1‘. D. (21100). Empincnl relationships between acoustic parameters In
human sol! USSLIES. Acoustics Research Leners Onlme 1(2), 37-42.
Maxwel.l.A.,Sapo1.hnil(m', 0.. Hailey, M., cnnn, L., xu, z., Fuwikes. B. Cain.
Outlook and Summary (2., and Khokhlova, v. (2012). Disintegration ermine using high intensity
Regen. advances in numerical methods and high_Pe,fm-mange focused uiimound: Two approaches that utilize shock waves. Amustici
computing mean that large-scale full-wave simulations of R:f:_"':’(:)’)f4‘] 37'  Semi. . of
“1'm°“fld PIOPHSEUDD in the human 5053' "6 MW Within simulated ti-anscranial ultrasound fields tnncoustic medium pmpertymaps.
reach. These models have a myriad of uses in ultrasound tl:ier- Physics in Medicine 1mdBialogy 52(7), 2559.25ao.
aw including Pm-em selmjnn (demmmmg whether a Pamm Robertson. 1. 1., Cox. 3. T., Iaros, 1., and Treeby. B. E. (2oi7a). Accurate
. . _ . simulation of transcranial ulti-asuund propagation for ultrasonic neuro-
is a good candidate for a pa.rticula.r procedure based on their modulmm “dsdm“lm.m_ 1he]mmfllofmAmmh.mlS“My qmmmm
individual anatomy), treatmt verification (determining the 141(3)_ 1725.173g_
cause Ofadvfirse events or uemnem failures), and mode|.be_;ed Sapozhnikov. 0. A., Tsysar, s. A. Khokblmra. v. A., and Kreider. W (2015).
treatment planning (determining the best transducer position A“’“E6c h°‘"3'“P:’;i;‘ m_;:"]I°3j"a1l‘°f"tI}f°:a:““;“;l;”,g ""“l“:l;""h,""
_ souri saumes an 5. mm a e in an an o erim
and sonication parameters to deliver the ultrasound energy). l38(3)_ 15154531 0,
Models are also being increasingly used to characterize clinical Tabei, M. Mast, "J2 D.,and Wang. )1. c. (Z002).Ak-space method forcoupled
equipment and as Pan offegulatm-Y submissions (the Us Food first-order amustic pmpagafion equations. Thelmmuzl afrhe Aanutiazl soci-
and Drug Administration has recently published guidance on viywfigbslngfl  van Dung“ K W A and Dem L (2014)
‘he “P0”-"LEE 0f C°mP“‘3fi°“31 Imdeling Smdifis that form s;n..i;n.,n Jnnannlni  In D. Panettn and  Demi(Eds.).Canu21e:
part of medical device submissions). One major challenge is hzmivr Bi'amadimIPhys1‘r_i. Flsevler, Amsmrdam 1711 455.500.
obtaining sufliciently accurate maps of material properties. W121: K"  G“‘““]L P-tMf"M““E‘:‘d“* 5" L"_’-Y" ““'ilH"":" G- (?’m4)f-
. . . rove measuru-rien o aca output using comp ex ecunv uuaii o
U“”‘““lV' ‘“°fi°l5 mm‘ h“1““°° “‘“°“"‘3 "mdel ‘°“‘Pl“' hyd:ophonex:nsiK1'vity.H-IEETmni11£tiansan l7lt1vLmniL<.Fer1aekctri'£s,:1nd
ity (e.g., including shear waves) with the efleci of parameter p,ni,4e,,q, c,,,.1,,,151(;)_52.75_
uncertainty on the simulated results. The circle of model _
development discussed here can be used as a guide for those Bmskemhes
developing models as well as to aid users in the selection and
evaluation of models. Bradley E. Treehy is an Engineering and
1 Physical Sciences Research Council
Acknowledgments ‘ _ , 1’ (EPSRC) Early Career Fellow, Deparnnent
This workwas supported in part bythe Engineeringand Physical ‘  of Medical Physics and Biomedical Engi-
Sciences Research Council, Swindon, UK. neering, University College London, and
V coauthor of the open-source k-Wave Tool-
References .
box. He received the 2017 R. Bruce
Gray, M. 1).. Stride. E. P.. and Coussins, c. c. (2019). Snap, crackle, “L‘“d5"'“/ ‘_‘"”d fmm the f“°“5“_“l S°_°‘elY °f Ammca {°’__
and pop: Theraeoustie cavitation. Acoustic: Today 15(1), 19.27. cont-nbutlons 10 thfi modeling °fb1°m9d1C1l “1'J”aS°“11d fi"—1d5-
litlps:/1do1.orylU.ll.l1/A'lZ2Ul9.15.l.l9
Go, 1., and ling. VL (2015). Modeling of wave propagation (ox medical ultra- , _ lid [ms is an asmdm Professor in the
sound; A review. EEE Tramacfians on Ultrasonics. Ferruelectfifl. and ‘ .
Frequency Cum‘ml62(l1),l979-1992. t. ' F“°_“1‘Y °“nf°‘ma“°“ T“-lm°1°E‘7» 3"“
Han-iiliun,M. F.,ai-id Blarlcstock. D.'1‘. (zoos). Nnnzimwamunm. Amuxural r : . University of Technology. Czech Republic.
50491)’ 0‘ Am"5‘3« M€1"m°- N1 . '1 leader of the Supercomputing Technolo-
Holm. s., and Ninhoim, s. P. (2014). Comparison of fractional wave equa-  gigs Research Group) and coauthor of the
(ions for power law attenuation .n ultrasound and elaxtagnphy. Ultrusuund
in Mm“-M and E,-clog}, 40(4)’ 595_7n3_ 1' J ’ k-Wave Toolbox. For more than a decade,
Iaros, 1., Rende|LA. 9., and Tteeby, 13. E. (2015). Full-wave nonlinear ultra- he has been working in the area of high-
:°“;:‘:m"J3fi°” :”;3'5‘:'b“‘°d  1" l‘38h'lg““3i‘Y performance computing, scientific code development, parallel
oc uhrzsoirn . 2 rmmtimuz mm a ' :7 armanae umpm- . . . . .
ingwlitflflom 30(2)’ 137_ 155 and distributed algorithms, and numerical simulations.
SuiIuner2|ll9|AA:a'.iuIHI:I‘1'b:Ily 1 43









































   43   44   45   46   47