Page 27 - Winter2021
P. 27
Lighthill, M. L. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London A: Math- ematical, Physical, and Engineering Sciences 211(1107), 564-587. https://doi.org/10.1098/rspa.1952.0060.
Lighthill, M. L. (1954). On sound generated aerodynamically II. Turbulence as a source of sound. Proceedings of the Royal Society of London A: Mathematical, Physical, and Engineering Sciences 212(1148), 1-32. https://doi.org/10.1098/rspa.1954.0049.
Luo, F.-L., and Nehorai, A. (2006). Recent developments in signal processing for digital hearing aids. IEEE Signal Processing Magazine 23(5), 103-106. https://doi.org/10.1109/MSP.2006.1708418.
Maki, J. N., Gruel, D., McKinney, C., Ravine, M. A., ... Algermissen S. (2020). The Mars 2020 Engineering Cameras and microphone on the Perseverance rover: A next-generation imaging system for Mars exploration. Space Science Reviews 216(137), 1-48. https://doi.org/10.1007/s11214-020-00765-9.
Marty, J. (2019). The IMS infrasound network: Current status and technological developments. In Le Pichon, A., Blanc, E., and Hau- checorne, A. (Eds.), Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits, 2nd ed. Springer International Publishing, Cham, Switzerland, pp. 3-62. https://doi.org/10.1007/978-3-319-75140-5_1.
Mathieu, J., and Scott, J. (2000). An Introduction to Turbulent Flow. Cambridge University Press, New York, NY. https://doi.org/10.1017/CBO9781316529850.
Mennitt, D., Sherrill, K., and Fristrup, K. (2014). A geospatial model of ambient sound pressure levels in the contiguous United States. The Journal of the Acoustical Society of America 135(5), 2746-2764. https://doi.org/10.1121/1.4870481.
Morgan, S. (1993). An Investigation of the Sources and Attenuation of Wind Noise in Measurement Microphones. PhD Thesis, University of Mississippi, University
National Aeronautics and Space Administration Earth Observatory (2000). Landsat 7 Reveals Large-Scale Fractal Motion of Clouds. Image and caption by Cahalan, B., NASA Goddard Space Flight Center, Green- belt, MD. Available at https://acousticstoday.org/nasa-fractal-clouds. Accessed July 13, 2021.
National Aeronautics and Space Administration/Jet Propulsion Laboratory-Caltech (2021). NASA’s Perseverance Rover Microphone Captures Sounds from Mars. NASA Mars Exploration Program.
Available at https://acousticstoday.org/nasa-mars-sound. Accessed
July 6, 2021.
Noble, J. M., Alberts, W. C. K., II, Raspet, R., Collier, S. L., and Cole-
man, M. A. (2014). Infrasonic wind noise reduction via porous fabric
domes. POMA 21, 045005. https://doi.org/10.1121/2.0000307. Phelps, W. D. (1938). Microphone wind screening. RCA Review
3(2), 203-212.
Raspet, R., Abbott, J., Webster, J., Yu, J., Talmadge, C., Alberts, K., II,
Collier, S., and Noble, J. (2019). New systems for wind noise reduc- tion for infrasonic measurements. In Le Pichon, A., Blanc, E., and Hauchecorne, A. (Eds.), Infrasound Monitoring for Atmospheric Stud- ies: Challenges in Middle Atmosphere Dynamics and Societal Benefits, 2nd ed. Springer International Publishing, Cham, Switzerland, pp. 91-124. https://doi.org/10.1007/978-3-319-75140-5_3.
Raspet, R., Webster, J., and Dillion, K. (2006). Framework for wind noise studies. The Journal of the Acoustical Society of America 119(2), 834-843. https://doi.org/10.1121/1.2146113.
Raspet, R., Yu, J., and Webster, J. (2007). Spherical Windscreen Research. Award No. RP6887 Final Report, BAE Systems/US Army Research Laboratory.
Raspet, R., Yu, J., and Webster, J. (2008). Low frequency wind noise contri- butions in measurement microphones. The Journal of the Acoustical Society of America 123(3), 1260-1269. https://doi.org/10.1121/1.2832329.
Strutt, J. W. (Lord Rayleigh) (1879). Acoustical observations. II. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science VII, 149-162. https://doi.org/10.1080/14786447908639584.
van den Berg, G. P. (2006). Wind-induced noise in a screened micro- phone. The Journal of the Acoustical Society of America 119(2), 824-833. https://doi.org/10.1121/1.2146085.
Walker, K. T., and Hedlin, M. A. (2010). A review of wind-noise reduction methodologies. In Le Pichon, A., Blanc, E., and Hauchecorne, A (Eds.), Infra- sound Monitoring for Atmospheric Studies, 1st ed. Springer, Dordrecht, The Netherlands, pp. 141-182. https://doi.org/10.1007/978-1-4020-9508-5_5.
Webster, J., Raspet, R., Yu, J., and Prather, W. E. (2010). Measurement of wind noise levels in streamlined probes. The Journal of the Acousti- cal Society of America 127(5), 2764-2770. https://doi.org/10.1121/1.3377049.
Wuttke, J. (1992). Microphones and wind. The Journal of the Audio Engineering Society 40(10), 809-817.
Wyngaard, J. C. (2010). Turbulence in the Atmosphere. Cambridge University Press, New York, NY. https://doi.org/10.1017/CBO9780511840524.
Xu, Y., Zheng, Z. C., and Wilson, D. K. (2011). A computational study of the effect of windscreen shape and flow resistivity on turbulent wind noise reduction. The Journal of the Acoustical Society of Amer- ica 129(4), 1740-1747. https://doi.org/10.1121/1.3552886.
Yu, J. (2009). Calculation of Wind Noise Measured at the Surface Under Tur- bulent Wind Fields. PhD Thesis, University of Mississippi, University.
Yu, J., Raspet, R., Webster, J., and Abbott, J. (2011a). Wind noise mea- sured at the ground surface. The Journal of the Acoustical Society of America 129(2), 622-632. https://doi.org/10.1121/1.3531809.
Yu, J., Raspet, R., Webster, J., and Abbott, J. (2011b). Improved pre- diction of the turbulence-shear contribution to wind noise pressure spectra. The Journal of the Acoustical Society of America 130(6), 3590- 3594. https://doi.org/10.1121/1.3652868.
Zhao, S., Dabin, M., Cheng, E., Qiu, X., Burnett, I., and Liu, J. C. (2017). On the wind noise reduction mechanism of porous micro- phone windscreens. The Journal of the Acoustical Society of America 142(4), 2454-2463. https://doi.org/10.1121/1.5008860.
Zheng,Z.,andTan,B.(2003).Reynoldsnumbereffectsonflow/acoustic mechanisms in spherical windscreens. The Journal of the Acoustical Soci- ety of America 113(1), 161-166. https://doi.org/10.1121/1.1527927.
About the Authors
Gregory W. Lyons
gregory.w.lyons@erdc.dren.mil
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, Mississippi 39180, USA
Gregory W. Lyons is a research physical scientist with the US Army Engineer Research and Develop-
ment Center (ERDC) in Vicksburg, Mississippi. He received his PhD in engineering science with an emphasis in aeroacoustics from the University of Mississippi, in 2016, where he was a graduate research assistant at the National Center for Physical Acoustics, University, Mississippi. His research interests include turbulent wind noise, quantitative and qualitative optical acoustic measurement, and nonlinear acoustics.
Winter 2021 • Acoustics Today 27