Page 36 - Winter2021
P. 36

NOVEL METHODS IN LUNG ULTRASOUND
2018). This has become even truer with the recent development of miniaturized ultrasound scanners and ultraportable ultrasound probes that can be connected to a tablet or a phone. All physical parameters developed so far, and the ones that will be developed in the future, can be obtained using a conventional ultrasound probe to acquire the raw data that would be processed by dedi- cated software. The quantitative characteristics of these parameters ensure that a highly skilled, highly trained technician is not needed to interpret the images. In this context, developing quantitative biomarkers of lung dis- eases that could be monitored at home, as frequently as needed, has become even more significant.
References
Abraham, W. T., Adamson, P. B., Bourge, R. C., Aaron, M. F., Costanzo, M. R., Stevenson, L. W., Strickland, W., Neelagaru, S., Raval, N., Krueger, S., and Weiner, S. (2011). Wireless pulmonary artery hae- modynamic monitoring in chronic heart failure: A randomised controlled trial. The Lancet 377(9766), 658-666. https://doi.org/10.1016/S0140-6736(11)60101-3.
Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., and Delling, F. N. (2019). Heart disease and stroke statis- tics-2019 update: A report From the American Heart Association. Circulation 139(10), e56-e528.
Crouch, E. (1990). Pathobiology of pulmonary fibrosis. In American Journal of Physiology-Lung Cellular and Molecular Physiology 259, L159-L184. https://doi.org/10.1152/ajplung.1990.259.4.l159.
Demi, L. (2020). Lung ultrasound: The future ahead and the lessons learned from COVID-19. The Journal of the Acoustical Society of
America 148(4), 2146-2150. https://doi.org/10.1121/10.0002183. Demi, L., Demi, M., Prediletto, R., and Soldati, G. (2020). Real-time
multi-frequency ultrasound imaging for quantitative lung ultra- sound-first clinical results. The Journal of the Acoustical Society of
America 148(2), 998-1006. https://doi.org/10.1121/10.0001723. Dunn, F. (1998). Attenuation and speed of ultrasound in lung: Depen-
dence upon frequency and inflation. The Journal of the Acoustical Society
of America 80(4), 1248-1250. https://doi.org/10.1121/1.393818. Dunn, F., and Fry, W. (1961). Ultrasonic absorption and reflection by
lung tissue. Physics in Medicine and Biology 5(4), 401.
Everbach, E. C. (2006). Biomedical ultrasound–past, present, and
future. Acoustics Today 2(1), 38-41. Available at
https://acousticstoday.org/everbach-ultrasound.
Gehlbach, B. K., and Geppert, E. (2004). The pulmonary manifesta-
tions of left heart failure. Chest 125(2), 669-682.
https://doi.org/10.1378/chest.125.2.669.
Ketterling, J. A., and Silverman, R. H. (2017). Clinical and preclinical
applications of high-frequency ultrasound. Acoustics Today 13(1),
44-51. Available at https://acousticstoday.org/jeffrey-ketterling. Lichtenstein, D., Mézière, G., Biderman, P., Gepner, A., and Barre, O. (1997). The comet-tail artifact: An ultrasound sign of alveolar-interstitial
syndrome. American Journal of Respiratory and Critical Care Medicine 156(5), 1640-1646. https://doi.org/10.1164/ajrccm.156.5.96-07096.
Lye, T. H., Roshankhah, R., Karbalaeisadegh, Y., Montgomery, S. A., Egan, T. M., Muller, M., and Mamou, J. (2021). In vivo assessment of pulmonary fibrosis and edema in rodents using the backscatter coef- ficient and envelope statistics). The Journal of the Acoustical Society of America 150(1), 183-192. https://doi.org/10.1121/10.0005481.
Mento, F., Soldati, G., Prediletto, R., Demi, M., and Demi, L (2020). Quantitative lung ultrasound spectroscopy applied to the diagnosis of pulmonary fibrosis: The first clinical study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67(11), 2265-2273. https://doi.org/10.1109/TUFFC.2020.3012289.
Mento, F., Perrone, T., Fiengo, A., Smargiassi, A., Inchingolo, R., Soldati, G., and Demi, L (2021). Deep learning applied to lung ultra- sound videos for scoring COVID-19 patients: A multicenter study. The Journal of the Acoustical Society of America 149(5), 3626-3634. https://doi.org/10.1121/10.0004855.
Mohanty, K., Blackwell, J., Egan, T., and Muller, M. (2017). Character- ization of the lung parenchyma using ultrasound multiple scattering. Ultrasound in Medicine and Biology 43(5), 993-1003. https://doi.org/10.1016/j.ultrasmedbio.2017.01.011.
Mohanty, K., Karbalaeisadegh, Y., Blackwell, J., Ali, M., Masuodi, B., Egan, T., and Muller, M. (2020). In vivo assessment of pulmonary fibrosis and pulmonary edema in rodents using ultrasound multiple scattering. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67(11), 2274-2280. https://doi.org/10.1109/TUFFC.2020.3023611.
O’Brien, W. D. (2018). Floyd Dunn and his contributions. Acoustics Today 14(1), 35-41.
Oelze, M. L., and Mamou, J. (2016). Review of quantitative ultra- sound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound. IEEE Transactions on Ultra- sonics, Ferroelectrics, and Frequency Control 63(2), pp. 336-351. https://doi.org/10.1109/TUFFC.2015.2513958.
Perrone, T., Soldati, G., Padovini, L., Fiengo, A., Lettieri, G., Sabatini, U., Gori, G., Lepore, F., Garolfi, M., Palumbo, I., and Inchingolo, R. (2020). A new lung ultrasound protocol able to predict worsening in patients affected by severe acute respiratory syndrome coronavirus 2 pneumonia. Journal of Ultrasound in Medicine 40(8), 1627-1634. https://doi.org/10.1002/jum.15548.
Raghu, G., Remy-Jardin, M., Myers, J. L., Richeldi, L., Ryerson, C. J., Lederer, D. J., Behr, J., Cottin, V., Danoff, S. K., Morell, F., and Fla- herty, K. R. (2018). Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine 198(5), e44-e68. https://doi.org/10.1164/rccm.201807-1255ST.
Simon, J. C., Maxwell, A. D., and Bailey, M. R. (2017). Some work on the diag- nosis and management of kidney stones with ultrasound. Acoustics Today 13(4), 52-59. Available at https://acousticstoday.org/Simon-ultrasound.
Smallwood, N., and Dachsel, M. (2018). Point-of-care ultrasound (POCUS): Unnecessary gadgetry or evidence-based medicine? In Clinical Medicine, Journal of the Royal College of Physicians of London 18(3), 219-224. https://doi.org/10.7861/clinmedicine.18-3-219. Soldati, G., Demi, M., Inchingolo, R., Smargiassi, A., and Demi, L. (2016). On the physical basis of pulmonary sonographic intersti- tial syndrome. Journal of Ultrasound in Medicine 35(10), 2075-2086. https://doi.org/10.7863/ULTRA.15.08023.
Soldati, G., Smargiassi, A., Inchingolo, R., Buonsenso, D., Perrone, T., Briganti, D. F., Perlini, S., Torri, E., Mariani, A., Mossolani, E. E., and Tursi, F. (2020). Proposal for international standardization of the use of lung ultrasound for patients with COVID-19. A simple, quantitative, reproducible method. Journal of Ultrasound in Medicine 39(7), 1413-1419. https://doi.org/10.1002/jum.15285.
                     36 Acoustics Today • Winter 2021































































   34   35   36   37   38