Page 22 - Summer2022
P. 22

BUBBLE-INDUCED TISSUE REGENERATION References Aliabouzar, M., Davidson, C. D., Wang, W. Y., Kripfgans, O. D., Fran- ceschi, R. T., Putnam, A. J., Fowlkes, J. B., Baker, B. M., and Fabiilli, M. L. (2020b). Spatiotemporal control of micromechanics and micro- structure in acoustically-responsive scaffolds using acoustic droplet vaporization. Soft Matter 16, 6501-6513. Aliabouzar, M., Jivani, A., Lu, X., Kripfgans, O. D., Fowlkes, J. B., and Fabiilli, M. L. (2020a). Standing wave-assisted acoustic droplet vaporization for single and dual payload release in acoustically- responsive scaffolds. Ultrasonics Sonochemistry 66, 105109. Aliabouzar, M., Kripfgans, O. D., Wang, W. Y., Baker, B. M., Fowlkes, J. B., and Fabiilli, M. L. (2021). Stable and transient bubble formation in acoustically-responsive scaffolds by acoustic droplet vaporization: theory and application in sequential release. Ultrasonics Sonochem- istry 72, 105430. Aliabouzar, M., Ley, A. W. Y., Meurs, S., Putnam, A. J., Baker, B. M., Kripfgans, O. D., Fowlkes, J. B., and Fabiilli, M. L. (2022). Micropatterning of acoustic droplet vaporization in acoustically- responsive scaffolds using extrusion-based bioprinting. Bioprinting 25, e00188. Apfel, R. E. (1998). Activatable Infusable Dispersions Containing Drops of a Superheated Liquid for Methods of Therapy and Diagnosis. US Patent No. 5,840,276, November 1998. Briquez, P. S., Clegg, L. E., Martino, M. M., Mac Gabhann, F., and Hubbell, J. A. (2016). Design principles for therapeutic angiogenic materials. Nature Reviews Materials 1, 15006. Burgess, M. T., and Porter, T. M. (2015). On-demand cavitation from bursting droplets. Acoustics Today 11(4), 35-41. Dong, X., Lu, X., Kingston, K., Brewer, E., Juliar, B. A., Kripfgans, O. D., Fowlkes, J. B., Franceschi, R. T., Putnam, A. J., Liu, Z., and Fabiilli, M. L. (2019). Controlled delivery of basic fibroblast growth factor (bFGF) using acoustic droplet vaporization stimulates endothelial network formation. Acta Biomaterialia 97, 409-419. Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689. Fabiilli, M. L., Wilson, C. G., Padilla, F., Martin-Saavedra, F. M., Fowl- kes, J. B., and Franceschi, R. T. (2013). Acoustic droplet-hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomaterialia 9, 7399-7409. Farrell, E. C., Aliabouzar, M., Quesada, C., Baker, B. M., Frances- chi, R. T., Putnam, A. J., and Fabiilli, M. L. (2022). Spatiotemporal control of myofibroblast activation in acoustically-responsive scaf- folds via ultrasound-induced matrix stiffening. Acta Biomaterialia 138, 133-143. Fisher, J. C. (1948). The fracture of liquids. Journal of Applied Physics 19, 1062-1067. Garvin, K. A., Dalecki, D., and Hocking, D. C. (2011). Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound in Medicine and Biology 37, 1853-1864. Gray, M. D., Stride, E. P., and Coussios, C. C. (2019). Snap, crackle, and pop: Theracoustic cavitation. Acoustics Today 15(1), 19-27. Huang, L., Quesada, C., Aliabouzar, M., Fowlkes, J. B., Franceschi, R. T., Liu, Z., Putnam, A. J., and Fabiilli, M. L. (2021). Spatially- directed angiogenesis using ultrasound-controlled release of basic fibroblast growth factor from acoustically-responsive scaffolds. Acta Biomaterialia 129, 73-83. Humphries, B. A., Aliabouzar, M., Quesada, C., Bevoor, A., Ho, K. K., Farfel, A., Buschhaus, J. M., Rajendran, S., Fabiilli, M. L., and Luker, G. D. (2022). Ultrasound-induced, mechanical compaction in acoustically-responsive scaffolds promotes spatiotemporally-modu- lated signaling in triple negative breast cancer. Advanced Healthcare Materials 2101672. https://doi.org/10.1002/adhm.202101672. Jin, H., Quesada, C., Aliabouzar, M., Kripfgans, O. D., Franceschi, R. T., Liu, J., Putnam, A. J., and Fabiilli, M. L. (2021). Release of basic fibroblast growth factor from acoustically-responsive scaffolds pro- motes therapeutic angiogenesis in the hind limb ischemia model. Journal of Controlled Release 338, 773-783. Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P., and Carson, P. L. (2000). Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine and Biology 26, 1177-1189. Lu, X., Jin, H., Quesada, C., Farrell, E. C., Aliabouzar, M., Kripfgans, O. D., Fowlkes, J. B., Franceschi, R. T., Putnam, A. J., and Fabiilli, M. L. (2020). Spatially-directed cell migration in acoustically-responsive scaffolds through the controlled delivery of basic fibroblast growth factor. Acta Biomaterialia 113, 217-227. Mercado-Shekhar, K. P., Su, H., Kalaikadal, D. S., Lorenz, J. N., Man- glik, R. M., Holland, C. K., Redington, A. N., and Haworth, K. J. (2019). Acoustic droplet vaporization-mediated dissolved oxygen scavenging in blood-mimicking fluids, plasma, and blood. Ultrason- ics Sonochemistry 56, 114-124. Moncion, A., Lin, M., Kripfgans, O. D., Franceschi, R. T., Putnam, A. J., and Fabiilli, M. L. (2018). Sequential payload release from acous- tically-responsive scaffolds using focused ultrasound. Ultrasound in Medicine and Biology 44, 2323-2335. Moncion, A., Lin, M., O'Neill, E. G., Franceschi, R. T., Kripfgans, O. D., Putnam, A. J., and Fabiilli, M. L. (2017). Controlled release of basic fibroblast growth factor for angiogenesis using acoustically- responsive scaffolds. Biomaterials 140, 26-36. Sato, M., Nagata, K., Kuroda, S., Horiuchi, S., Nakamura, T., Karima, M., Inubushi, T., and Tanaka, E. (2014). Low-intensity pulsed ultra- sound activates integrin-mediated mechanotransduction pathway in synovial cells. Annals of Biomedical Engineering 42, 2156-2163. Schad, K. C., and Hynynen, K. (2010). In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Physics in Medicine & Biology 55, 4933-4947. Sheeran, P. S., Daghighi, Y., Yoo, K., Williams, R., Cherin, E., Foster, F. S., and Burns, P. N. (2016). Image-guided ultrasound characteriza- tion of volatile sub-micron phase-shift droplets in the 20-40 MHz frequency range. Ultrasound in Medicine and Biology 42, 795-807. Simplicio, C. L., Purita, J., Murrell, W., Santos, G. S., Dos Santos, R. G., and Lana, J. F. S. D. (2020). Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. Journal of Clinical and Orthopaedics and Trauma 11, S309-S318. Tebebi, P. A., Kim, S. J., Williams, R. A., Milo, B., Frenkel, V., Burks, S. R., and Frank, J. A. (2017). Improving the therapeutic efficacy of mes- enchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Scientific Reports 7, 41550. Tengood, J. E., Ridenour, R., Brodsky, R., Russell, A. J., and Little, S. R. (2011). Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Engineering Part A 17, 1181-1189.  22 Acoustics Today • Summer 2022 


































































































   20   21   22   23   24