Page 24 - Summer 2010
P. 24
22 C. Pantev, R. Oostenveld, A. Engelien, B. Ross, L. E. Roberts, and M. Hoke, “Increased auditory cortical representation in musi- cians,” Nature 392, 811–814 (1998).
23 A. Shahin, D. J. Bosnyak, L. J. Trainor, and L. E. Roberts, “Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians,” J. Neurosci. 23, 5545–5552 (2003).
24 T. Fujioka, L. J. Trainor, B. Ross, R. Kakigi, and C. Pantev, “Musical training enhances automatic encoding of melodic con- tour and interval structure,” J. Cognitive Neurosci. 16, 1010–1021 (2004).
25 P. Schneider, M. Scherg, H. G. Dosch, H. J. Specht, A. Gutschalk, and A. Rupp, “Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians,” Nature Neurosci. 5, 688–694 (2002).
26 A. Shahin, L. E. Roberts, and L. J. Trainor, “Enhancement of auditory cortical development by musical experience in chil- dren,” Neuroreport 15, 1917–1921 (2004).
27 T. Fujioka, B. Ross, R. Kakigi, C. Pantev, and L. J. Trainor, “One year of musical training affects development of auditory corti- cal-evoked fields in young children,” Brain 129, 2593–2608 (2006).
28 A. J. Shahin, L. E. Roberts, W. Chau, L. J. Trainor, and L. M. Miller, “Music training leads to the development of timbre-spe- cific gamma band activity,” Neuroimage 41, 113–122 (2008).
29 C. Pantev, L. E. Roberts, M. Schulz, A. Engelien, and B. Ross, “Timbre-specific enhancement of auditory cortical representa- tions in musicians,” Neuroreport 12, 169–174 (2001).
30 B. de Gelder and J. Vroomen, “Impaired speech perception in poor readers: Evidence from hearing and speech reading,” Brain and Language 64, 269–281 (1998).
31 P. Tallal and R. E. Stark, “Speech acoustic-cue discrimination abilities of normally developing and language-impaired chil- dren,” J. Acoust. Soc. Am. 69, 568–574 (1981).
32 P. Tallal, “Auditory temporal perception, phonics, and reading disabilities in children,” Brain and Language 9, 182–198 (1980).
33 A. W. Bronkhorst, “The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions,” Acustica 86, 117–128 (2000).
34 E. C. Cherry, “Some experiments on the recognition of speech, with one and with two ears,” J. Acoust. Soc. Am. 25, 975–979 (1953).
35 M. Ericson and R. McKinley, “The intelligibility of multiple talk- ers spatially separated in noise,” in Binaural and Spatial Hearing in Real and Virtual Environments, edited by R. H. Gilkey and T. R. Anderson (Erlbaum, Hillsdale, NJ, 1997) pp. 701-724.
36 A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, Cambridge, MA, 1990).
37 B. G. Shinn-Cunningham and V. Best, “Selective attention in normal and impaired hearing,” Trends in Amplification 12, 283–299 (2008).
38 B. G. Shinn-Cunningham, “Why hearing impairment may degrade selective attention,” International Symposium on Auditory and Audiological Research, Helsingor, Denmark (2007).
39 M. A. Bee and G. M. Klump, “Primitive auditory stream segre- gation: A neurophysiological study in the songbird forebrain,” J. Neurophysiology 92, 1088–1104 (2004).
40 C. Micheyl, R. P. Carlyon, A. Gutschalk, J. R. Melcher, A. J. Oxenham, J. P. Rauschecker, B. Tian, and E. C. Wilson, “The role of auditory cortex in the formation of auditory streams,” Hearing Res. 229, 116–131 (2007).
41 C. Micheyl, B. Tian, R. P. Carlyon, and J. P. Rauschecker, “Perceptual organization of tone sequences in the auditory cor- tex of awake Macaques,” Neuron 48, 139–148 (2005).
42 J. S. Snyder and C. Alain, “Toward a neurophysiological theory of auditory stream segregation,” Psychological Bulletin 133, 780–799 (2007).
43 C. J. Darwin and R. W. Hukin, “Effectiveness of spatial cues, prosody, and talker characteristics in selective attention,” J. Acoust. Soc. Am. 107, 970–977 (2000).
44 M. Sayles and I. M. Winter, “Reverberation challenges the tem- poral representation of the pitch of complex sounds,” Neuron 58, 789–801 (2008).
45 J. P. L. Brokx and S. G. Nooteboom, “Intonation and the percep- tual separation of simultaneous voices,” J. Phonetics 10, 23–36 (1982).
46 G. Parikh and P. C. Loizou, “The influence of noise on vowel and consonant cues,” J. Acoust. Soc. Am. 118, 3874–3888 (2005).
47 B. C. J. Moore, B. R. Glasberg, and R. W. Peters, “Relative domi-
nance of individual partials in determining the pitch of complex
tones,” J. Acoust. Soc. Am. 77, 1853–1860 (1985).
48 J. Bird and C. J. Darwin, “Effects of a difference in fundamental frequency in separating two sentences,” in Psychophysical and Physiological Advances in Hearing, edited by A. R. Palmer, A. Rees, A. Q. Summerfield, and R. Meddis (Whurr, London, 1998)
pp. 263-269.
49 A. Krishnan, Y. S. Xu, J. Gandour, and P. Cariani, “Encoding of
pitch in the human brainstem is sensitive to language experi-
ence,” Cognitive Brain Res. 25, 161–168 (2005).
50 J. Swaminathan, A. Krishnan and J. T. Gandour, “Pitch encoding in speech and nonspeech contexts in the human auditory brain-
The Formula 1 in Room Acoustics now handles array loudspeakers and clusters.
www.odeon.dk
Musician’s Auditory World 23