Page 20 - Jan2013
P. 20
and frequency dependent attenuation of monodisperse popula- tions of lipid coated microbubbles,” Bubble Sci., Eng. & Technol. 2(2), 41–47 (2010).
18 L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94 (1917).
19 T. B. Benjamin and A. T. Ellis, “The collapse of cavitation bub- bles and the pressures thereby produced against solid bound- aries,” Philosophical Trans. of the Royal Soc. of London. Series A, Mathematical and Physical Sciences 260(1110), 221–240 (1966).
20 J. R. Blake and D. C. Gibson, “Cavitation bubbles near bound- aries,” Ann. Rev. Fluid Mech. 19(1), 99–123 (1987).
21 P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deforma- tion and lysis by single oscillating bubbles,” Nature 423(6936), 153–156 (2003).
22 P. Prentice, A. Cuschierp, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nature Phys. 1(2), 107–110 (2005).
23 E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus,” J. Fluid Mech. 433, 283–314 (2001).
24 D. Miller, M. A. Averkiou, A. A. Brayman, E. C. Everbach, C. K. Holland, J. H. Wible, Jr., and J. Wu, “Bioeffects considerations for diagnostic ultrasound contrast agents,” J. Ultrasound in Med. and Biology 27(4), 633–636 (2008).
25 Z. P. Shen, A. A. Brayman, L. Chen, and C. H. Miao, “Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery,” Gene Therapy 15(16), 1147–1155 (2008).
Acknowledgments
This work could not have been completed without con- tributions from Mike Bailey, Andrew Brayman, Wayne Kreider, Frank Starr, and Juan Tu. Funding from NIH (NIBIB, NIDDK, and NIAMS) is gratefully acknowledged.
References
1 N. Deshpande, A. Needles, and J.K. Willmann, “Molecular ultra- sound imaging: current status and future directions,” Clinical Radiol. 65(7), 567–81, 3144865 (2010).
2 D. Chatterjee and K. Sarkar, “A Newtonian rheological model for the interface of microbubble contrast agents,” Ultrasound in Med. and Biol. 29(12), 1749–1757 (2003).
3 A. A. Doinikov, J. F. Haac, and P. A. Dayton, “Modeling of non- linear viscous stress in encapsulating shells of lipid-coated con- trast agent microbubbles,” Ultrasonics 49(2), 269–275 (2009).
4 N. de Jong, R. Cornet, and C. T. Lancee, “Higher harmonics of vibrating gas-filled microspheres. Part one: Simulation,” Ultrasonics 32, 447 (1994).
5 P. Marmottant, S. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldt, and D. Lohse, “A model for large amplitude oscillations of coated bubbles accounting for buckling and rup- ture,” J. Acoust. Soc. Am. 118(6), 3499–3505 (2005).
6 C. C. Church, “The effects of an elastic solid surface layer on the radial pulsations of gas bubbles,” J. Acoust. Soc. Am. 97,1510 (1995).
7 W. Shao and W. Chen, “The dynamics of the aspheric encapsu- lated bubble,” J. Acoust. Soc. Am. 133(1), 119–126 (2013).
8 K. Sarkar, W. T. Shi, D. Chatterjee, and F. Forsberg, “Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation,” J. Acoust. Soc. Am. 118(1), 539–550 (2005).
9 J. Tu, J. F. Guan, Y. Y. Qiu, and T. J. Matula, “Estimating the shell parameters of SonoVue (R) microbubbles using light scattering,” J. Acoust. Soc. Am. 126(6), 2954–2962 (2009).
10 J. Tu, J. Swalwell, D. Giraud, W. Cui, W. Chen, and T. Matula, “Microbubble sizing and shell characterization using flow cytometry,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 58(5), 955–963 (2011).
11 N. de Jong, R. Cornet, and C. T. Lancee, “Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements,” Ultrasonics 32, 455 (1994).
12 F. Graner, S. Perez-Oyarzun, A. Saint-Jalmes, C. Flament, and F. Gallet, “Phospholipidic monolayers on formamide,” J. Phys. II 5, 313 (1995).
13 N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, “ ‘Compression-only’ behavior of phos- pholipid-coated contrast bubbles,” Ultrasound in Med. and Biology 33(4), 653–656 (2007).
14 J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, “ ‘Compression-only’ behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am. 129(4), 1729–1739 (2011).
15 P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bub- bles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004).
16 K. Hettiarachchi, E. Talu, M. L. Longo, P. A. Dayton, and A. P. Lee, “On-chip generation of microbubbles as a practical tech- nology for manufacturing contrast agents for ultrasonic imag- ing,” Lab on a Chip 7(4), 463–468 (2007).
17 Y. Gong, M. Cabodi, and T. Porter, “Relationship between size
Why You Hear
What You Hear
An Experiential Approach to Sound, Music, and Psychoacoustics
Eric J. Heller
“Rich in explanations and do-it-yourself activities, and assuming only a high school background, this is the best text I know on how sound actually works. But what makes this book truly a treasure is the degree to which it is so fully informed by Heller’s particular scientific genius: he shows by example after example how to think through complex and nonlinear systems to capture their essential features, leading to deep, novel, and practically applicable insights.”
—David Politzer, Nobel Laureate in Physics
Cloth $99.50 978-0-691-14859-5
See our E-Books at press.princeton.edu
Microbubbles as Ultrasound Contrast Agents 19