Page 55 - Summer2020
P. 55

Boocock, D., and Maunder, L. (1969). Vibration of a symmetric tuning fork. Journal of Mechanical Engineering Science 11(4), 364- 375. https://doi.org/10.1243/JMES_JOUR_1969_011_045_02.
Burleigh, T. D., and Fuierer, P. (2005). Tuning forks for vibrant teach- ing. JOM: Journal of the Minerals, Metals & Materials Society 57(11), 26-27. https://doi.org/10.1007/s11837-005-0022-4.
Butskiy, O., Ng, D., Hodgson, M., and Nunez, D. A. (2016). Rinne test: Does the tuning fork position affect the sound amplitude at the ear? Journal of Otolaryngology-Head and Neck Surgery 45, 21. https://doi.org/10.1186/s40463-016-0133-7.
Chladni, E. F. F. (1802). Die Akustik. Breitkopf & Hartel, Liepzig. Translated into English by R. T. Beyer, Treatise on Acoustics: The First Comprehensive English Translation of E. F. F. Chaldni’s Traite d’Acoustique. Springer International Publishing, 2015.
Feldmann, H. (1997a). History of the tuning fork. I: Invention of the tuning fork, its course in music and natural sciences. Laryngo-Rhino- Otologie 76(2), 116-122. https://doi.org/10.1055/s-2007-997398. (in German)
Feldmann, H. (1997b). History of the tuning fork. II: The invention of the classic tests of Weber, Rinne, and Schwabach. Laryngo-Rhino- Otologie 76(5), 318-326. https://doi.org/10.1055/s-2007-997435. (in German)
Feldmann, H. (1997c). History of the tuning fork. III: On the way to quantitatively measuring hearing acuity. Laryngo-Rhino- Otologie 76(7), 428-434. https://doi.org/10.1055/s-2007-997457. (in German)
Froehle, B., and Persson, P.-O. (2014). High-order accurate fluid- structure simulation of a tuning fork. Computers & Fluids 98, 230-230. https://doi.org/10.1016/j.compfluid.2013.11.009.
Greenslade, T. B., Jr. (1992). The acoustical apparatus of Rudolph Koenig. The Physics Teacher 30(12), 518-524. https://doi.org/10.1119/1.2343629.
Guillemin, A. (1877). The Forces of Nature: A Popular Introduction to the Study of Physical Phenomena. MacMillan and Co., London. Edited by J. M. Lockyer; translated by N. Lockyer.
Helmholtz, H. L. F. (1885). On the Sensations of Tone as a Physiological Basis for the Theory of Music, 2nd ed. Longmans, Green and Com- pany, London. Translated by A. J. Ellis, Dover, New York, 1954.
Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V. (2000). Fundamentals of Acoustics, 4th ed. J. Wiley & Sons, New York.
Laughlin, Z., Naumann, F., and Miodownik, M. (2008). Investigating the acoustic properties of materials with tuning forks. In Proceed- ings of the Materials & Sensations Conference, Pau, France, October 22–24, 2008.
Lincoln, J. (2013). Ten things you should do with a tuning fork. Phys- ics Teacher 51(3), 176-181. https://doi.org/10.1119/1.4792020.
MacKechnie, C. A., Greenberg, J. J., Gerkin, R. C., McCall, A. A., Hirsch, B. E., Durrant, J. D., and Raz, Y. (2013). Rinne revisited: Steel versus aluminum tuning forks. Journal of Otolaryngology-Head and Neck Surgery 149(6), 907-213. https://doi.org/10.1177/0194599813505828.
Martina, I. S. J., van Koningsveld, R., Schmitz, P. I .M., Van der Meche, F. G. A., and Van Doorn, P. A. (1998). Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. Journal of Neurology, Neurosurgery & Psychiatry 65, 743-747. https://doi.org/10.1136/jnnp.65.5.743.
Miller, D. C. (1926). The Science of Musical Sounds, 2nd ed. Macmillan, New York, pp. 29-33.
Miller, D. C. (1935). Anecdotal History of the Science of Sound to the Beginning of the 20th Century. MacMillan, New York, p. 39.
Pantalony, D. (2009). Altered Sensations: Rudolph Koenig’s Acoustical Workshop in Nineteenth-Century Paris. Springer Netherlands, Dor- drecht, pp. 92-93.
Rayleigh, J. W. S. (1894). The Theory of Sound, vol. 1. MacMillan, London, §56 and §171. Reprinted by Dover, New York, 1945.
Rayleigh, J. W. S. (1899). Octave from tuning-forks. Scientific Papers vol. 1, pp. 318-319.
Rayleigh, J. W. S. (1912). Longitudinal balance of tuning-forks. Scien- tific Papers vol. 5, pp. 372-375. Originally published in Philosophical Magazine 13, 316-333 (1907).
Rossing, T. D., Russell, D. A, and Brown, D. E. (1992). On the acous- tics of tuning forks. American Journal of Physics 60(7), 620-626. https://doi.org/10.1119/1.17116.
Russell, D. A. (2000). On the sound field radiated by a tuning fork. American Journal of Physics 68(12), 1139-1145. https://doi.org/10.1119/1.1286661. Russell, D. A. (2017). Acoustics and vibration of baseball and softball
bats. Acoustics Today 13(4), 35-42.
Russell, D. A., Junell, J., and Ludwigsen, D. O. (2013). Vector inten-
sity around a tuning fork. American Journal of Physics 81(2), 99-103.
https://doi.org/10.1119/1.4769784.
Sillitto, R. M. (1966). Angular distribution of the acoustic radiation
from a tuning fork. American Journal of Physics 34(8), 639-644.
https://doi.org/10.1119/1.1973192.
Sönnerlind, H. (2018). Finding Answers to the Tuning Fork Mystery
with Simulation. Available at https://www.comsol.com/blogs/finding- answers-to-the-tuning-fork-mystery-with-simulation/. Accessed February 17, 2020.
Stevens, J. R., and Pfannenstiel, T. J. (2015). The otologist’s tuning fork exam- ination—Are you striking it correctly? Otolaryngology—Head and Neck Surgery 153(3), 477-479. https://doi.org/10.1177/0194599814559697.
Watson, D. A. R. (2011). How to make a tuning fork vibrate: The humble pisiform bone. The Medical Journal of Australia 195(11), 732. https://doi.org/10.5694/mja11.11058.
                 About the Author
Daniel A. Russell dar119@psu.edu
201 Applied Science Building
The Pennsylvania State University University Park, Pennsylvania 16802, USA
Daniel A. Russell is a teaching profes-
sor of acoustics and distance education coordinator for the Graduate Program in Acoustics at the Pennsylvania State University (University Park). His research focuses on the acoustics and vibration of sports equipment
(e.g., baseball and softball bats, ice and field hockey sticks, tennis rackets, cricket bats, hurling sticks, golf drivers, putters and balls, and ping-pong paddles). He also spends time in his laboratory developing physical demonstrations of vibroacous- tic phenomena for classroom teaching along with computer animations to explain acoustics and vibration concepts. His animations website (see acs.psu.edu/drussell/demos.html) is well-known throughout the acoustics education community.
      Summer 2020 • Acoustics Today 55
























































   53   54   55   56   57